【題目】設橢圓,右頂點是,離心率為.

(1)求橢圓的方程;

(2)若直線與橢圓交于兩點(不同于點),若,求證:直線過定點,并求出定點坐標.

【答案】(1); (2).

【解析】

(1)由橢圓右頂點的坐標為A(2,0),離心率,可得a,c的值,由此可得橢圓C的方程;(2)當直線斜率不存在時,設,易得,當直線斜率存在時,直線,與橢圓方程聯(lián)立,得,由可得,從而得證.

(1)右頂點是,離心率為,

所以,∴,則,

∴橢圓的標準方程為.

(2)當直線斜率不存在時,設

與橢圓方程聯(lián)立得:,,

設直線軸交于點,,即,

(舍),

∴直線過定點

當直線斜率存在時,設直線斜率為,,則直線,與橢圓方程聯(lián)立,得

,,

,

,則

,

,

∴直線,

∴直線過定點舍去;

綜上知直線過定點.

練習冊系列答案
相關(guān)習題

科目:高中數(shù)學 來源: 題型:

【題目】學校游園活動有這樣一個游戲項目:甲箱子里裝有3個白球、2個黑球,乙箱子里裝有1個白球、2個黑球,這些球除顏色外完全相同.每次游戲從這兩個箱子里各隨機摸出2個球,若摸出的白球不少于2個,則獲獎.(每次游戲結(jié)束后將球放回原箱)

(1)求在1次游戲中,

①摸出3個白球的概率;

②獲獎的概率;

(2)求在2次游戲中獲獎次數(shù)的分布列.

查看答案和解析>>

科目:高中數(shù)學 來源: 題型:

【題目】高一學年結(jié)束后,要對某班的50名學生進行文理分班,為了解數(shù)學對學生選擇文理科是否有影響,有人對該班的分科情況做了如下的數(shù)據(jù)統(tǒng)計:

理科人數(shù)

文科人數(shù)

總計

數(shù)學成績好的人數(shù)

25

30

數(shù)學成績差的人數(shù)

10

合計

15

(Ⅰ)根據(jù)數(shù)據(jù)關(guān)系,完成列聯(lián)表;

(Ⅱ)通過計算判斷能否在犯錯誤的概率不超過的前提下認為數(shù)學對學生選擇文理科有影響.

附:

0.05

0.025

0.010

0.005

3.841

5.024

6.635

7.879

查看答案和解析>>

科目:高中數(shù)學 來源: 題型:

【題目】解關(guān)于x的不等式:x2-(a+)x+1≤0 (a∈R,且a≠0)

查看答案和解析>>

科目:高中數(shù)學 來源: 題型:

【題目】把某校名學生的一次考試成績(單位:)分成5組得到的頻率分布直方圖如圖所示,其中落在內(nèi)的頻數(shù)為180.

1)請根據(jù)圖中所給數(shù)據(jù),求出本次考試成績的中位數(shù)(保留一位小數(shù));

2)從這5組中按分層抽樣的方法選取40名學生的成績作為一個樣本,在內(nèi)的樣本中,再隨機抽取兩名學生的成績,求所抽取兩名學生成績的平均分不低于70分的概率.

查看答案和解析>>

科目:高中數(shù)學 來源: 題型:

【題目】某地區(qū)某農(nóng)產(chǎn)品近幾年的產(chǎn)量統(tǒng)計如表:

(1)根據(jù)表中數(shù)據(jù),建立關(guān)于的線性回歸方程

(2)根據(jù)線性回歸方程預測2019年該地區(qū)該農(nóng)產(chǎn)品的年產(chǎn)量.

附:對于一組數(shù)據(jù),其回歸直線的斜率和截距的最小二乘估計分別為:,.(參考數(shù)據(jù): ,計算結(jié)果保留小數(shù)點后兩位)

查看答案和解析>>

科目:高中數(shù)學 來源: 題型:

【題目】心理學家分析發(fā)現(xiàn)視覺和空間能力與性別有關(guān),某數(shù)學興趣小組為了驗證這個結(jié)論,從興趣小組中按分層抽樣的方法抽取名同學(男),給所有同學幾何題和代數(shù)題各一題,讓各位同學自由選擇一道題進行解答.選題情況如下表:(單位:人)

幾何題

代數(shù)題

總計

男同學

女同學

總計

(1)能否據(jù)此判斷有的把握認為視覺和空間能力與性別有關(guān)?

(2)經(jīng)過多次測試后,甲每次解答一道幾何題所用的時間在分鐘,乙每次解答一道幾何題所用的時間在分鐘,現(xiàn)甲、乙各解同一道幾何題,求乙比甲先解答完的概率.

(3)現(xiàn)從選擇做幾何的名女生中任意抽取兩人對她們的答題情況進行全程研究,記甲、乙兩女生被抽到的人數(shù)為,求的分布列及數(shù)學期望.

查看答案和解析>>

科目:高中數(shù)學 來源: 題型:

【題目】已知函數(shù)

討論函數(shù)的單調(diào)性;

若關(guān)于x的方程有唯一解,且,,求n的值.

查看答案和解析>>

科目:高中數(shù)學 來源: 題型:

【題目】在△ABC中,角A、B、C的對邊分別為a、bc.已知cosC

(1),求△ABC的面積;

(2)設向量,且,求sin(BA)的值.

查看答案和解析>>

同步練習冊答案