2.已知x>0,y>0,lg2x+lg8y=lg4,則$\frac{1}{x}+\frac{1}{3y}$的最小值為(  )
A.2B.$2\sqrt{2}$C.4D.$2\sqrt{3}$

分析 lg2x+lg8y=lg4,利用對(duì)數(shù)的運(yùn)算性質(zhì)可得x+3y=2.再利用“乘1法”與基本不等式的性質(zhì)即可得出.

解答 解:∵lg2x+lg8y=lg4,∴2x•8y=2x+3y=22,解得x+3y=2.
∵x>0,y>0,則$\frac{1}{x}+\frac{1}{3y}$=$\frac{1}{2}(x+3y)$$(\frac{1}{x}+\frac{1}{3y})$=$\frac{1}{2}(2+\frac{3y}{x}+\frac{x}{3y})$≥$\frac{1}{2}(2+2\sqrt{\frac{3y}{x}•\frac{x}{3y}})$=2,
當(dāng)且僅當(dāng)x=3y=1時(shí)取等號(hào).
故選:A.

點(diǎn)評(píng) 本題考查了對(duì)數(shù)的運(yùn)算性質(zhì)、“乘1法”與基本不等式的性質(zhì),考查了推理能力與計(jì)算能力,屬于中檔題.

練習(xí)冊(cè)系列答案
相關(guān)習(xí)題

科目:高中數(shù)學(xué) 來(lái)源: 題型:選擇題

14.要得到函數(shù)y=sin2x的圖象,只需將y=sin(2x+$\frac{π}{4}$)的圖象(  )
A.向左平移$\frac{π}{8}$個(gè)單位長(zhǎng)度B.向右平移$\frac{π}{8}$個(gè)單位長(zhǎng)度
C.向左平移$\frac{π}{4}$個(gè)單位長(zhǎng)度D.向右平移$\frac{π}{4}$個(gè)單位長(zhǎng)度

查看答案和解析>>

科目:高中數(shù)學(xué) 來(lái)源: 題型:選擇題

15.如圖所示的平面區(qū)域所對(duì)應(yīng)的不等式組是( 。
A.$\left\{{\begin{array}{l}{x+y-1≥0}\\{x-2y+2≥0}\\{2x-y-2≤0}\end{array}}\right.$B.$\left\{{\begin{array}{l}{x+y-1≥0}\\{x-2y+2≥0}\\{2x-y-2≥0}\end{array}}\right.$
C.$\left\{{\begin{array}{l}{x+y-1≥0}\\{x-2y+2≤0}\\{2x-y-2≤0}\end{array}}\right.$D.$\left\{{\begin{array}{l}{x+y-1≥0}\\{x-2y+2≤0}\\{2x-y-2≥0}\end{array}}\right.$

查看答案和解析>>

科目:高中數(shù)學(xué) 來(lái)源: 題型:填空題

12.若二次函數(shù)f(x)=(m-1)x2+2mx+3是定義在[-3a,4-a]上的偶函數(shù),則f(x)的值域?yàn)閇-6,3].

查看答案和解析>>

科目:高中數(shù)學(xué) 來(lái)源: 題型:選擇題

19.已知函數(shù)y=f(x)在(-∞,+∞)上是減函數(shù),則y=f(|x+2|)的單調(diào)遞減區(qū)間是( 。
A.(-∞,+∞)B.[-2,+∞)C.[2,+∞)D.(-∞,-2]

查看答案和解析>>

科目:高中數(shù)學(xué) 來(lái)源: 題型:填空題

7.已知tanx=3,則$\frac{sinx+3cosx}{2sinx-3cosx}$=2.

查看答案和解析>>

科目:高中數(shù)學(xué) 來(lái)源: 題型:填空題

14.已知直線y=kx+2與雙曲線x2-y2=6的左支交于不同的兩點(diǎn),則k的取值范圍是$1<k<\frac{{\sqrt{15}}}{3}$.

查看答案和解析>>

科目:高中數(shù)學(xué) 來(lái)源: 題型:解答題

11.已知函數(shù)f(x)=4cosωx•sin(ωx+$\frac{π}{4}$)(ω>0)的最小正周期為π.
(1)求ω的值;
(2)求f(x)在區(qū)間[-$\frac{π}{2}$,0]上的單調(diào)性.

查看答案和解析>>

科目:高中數(shù)學(xué) 來(lái)源: 題型:選擇題

12.如圖,⊙O:x2+y2=16,A(-2,0),B(2,0)為兩個(gè)定點(diǎn),l是⊙O的一條切線,若過(guò)A,B兩點(diǎn)的拋 物線以直線l為準(zhǔn)線,則該拋物線的焦點(diǎn)的軌跡是(  )
A.B.雙曲線C.橢圓D.拋物線

查看答案和解析>>

同步練習(xí)冊(cè)答案