【題目】已知復(fù)數(shù)z1=m+ni(m,n∈R),z=x+yi(x,y∈R),z2=2+4i且 .
(1)若復(fù)數(shù)z1對應(yīng)的點(diǎn)M(m,n)在曲線 上運(yùn)動,求復(fù)數(shù)z所對應(yīng)的點(diǎn)P(x,y)的軌跡方程;
(2)將(1)中的軌跡上每一點(diǎn)按向量 方向平移 個單位,得到新的軌跡C,求C的軌跡方程;
(3)過軌跡C上任意一點(diǎn)A(異于頂點(diǎn))作其切線,交y軸于點(diǎn)B,求證:以線段AB為直徑的圓恒過一定點(diǎn),并求出此定點(diǎn)的坐標(biāo).
【答案】
(1)解:∵ i﹣z2=(m﹣ni)i﹣(2+4i)=(n﹣2)+(m﹣4)i;
∴ .
∵復(fù)數(shù)z1對應(yīng)的點(diǎn)M(m,n)在曲線 上運(yùn)動
∴x+2=﹣ (y+7)2﹣1(y+7)2=﹣2(x+3).
復(fù)數(shù)z所對應(yīng)的點(diǎn)P(x,y)的軌跡方程:(y+7)2=﹣2(x+3).
(2)解:∵按向量 方向平移 個單位, = =1× .
即為向 x 方向移動 1× = 個單位,向 y 方向移動 1×1=1 個單位
(y+7)2=﹣2(x+3)y+7=± .
得軌跡方程 y+7=± (y+6)2=﹣2(x+ )=﹣2x﹣3.
C的軌跡方程為:(y+6)2=﹣2x﹣3.
(3)解:設(shè)A(x0,y0),斜率為k,切線y﹣y0=k(x﹣x0) (k≠0),
代入(y+6)2=﹣2x﹣3整理得:
(y+6)2=﹣2( )﹣3,△=0k= ,
設(shè)定點(diǎn)M(1,0),且 .
∴以線段AB為直徑的圓恒過一定點(diǎn)M,M點(diǎn)的坐標(biāo)(1,0).
【解析】(1)根據(jù)復(fù)數(shù)條件求出關(guān)系式 ,結(jié)合復(fù)數(shù)z1對應(yīng)的點(diǎn)M(m,n)在曲線 上運(yùn)動即可得出復(fù)數(shù)z所對應(yīng)的點(diǎn)P(x,y)的軌跡方程;(2)先按向量 方向平移 個單位得到即為向 x 方向移動 1× = 個單位,向 y 方向移動 1×1=1 個單位,再進(jìn)行函數(shù)式的變換即可得出C的軌跡方程;(3)設(shè)A(x0,y0),斜率為k,切線y﹣y0=k(x﹣x0) 代入(y+6)2=﹣2x﹣3消去x得到關(guān)于y的一元二次方程,再結(jié)合根的判別式為0利用向量的數(shù)量即可求得定點(diǎn),從而解決問題.
年級 | 高中課程 | 年級 | 初中課程 |
高一 | 高一免費(fèi)課程推薦! | 初一 | 初一免費(fèi)課程推薦! |
高二 | 高二免費(fèi)課程推薦! | 初二 | 初二免費(fèi)課程推薦! |
高三 | 高三免費(fèi)課程推薦! | 初三 | 初三免費(fèi)課程推薦! |
科目:高中數(shù)學(xué) 來源: 題型:
【題目】已知函數(shù)f(x)=sin(2x+ ),將其圖象向右平移 ,則所得圖象的一條對稱軸是( )
A.x=
B.x=
C.x=
D.x=
查看答案和解析>>
科目:高中數(shù)學(xué) 來源: 題型:
【題目】已知橢圓C: + =1(a>b>0)的離心率為 ,若圓x2+y2=a2被直線x﹣y﹣ =0截得的弦長為2
(Ⅰ)求橢圓C的標(biāo)準(zhǔn)方程;
(Ⅱ)已知點(diǎn)A、B為動直線y=k(x﹣1),k≠0與橢圓C的兩個交點(diǎn),問:在x軸上是否存在定點(diǎn)M,使得 為定值?若存在,試求出點(diǎn)M的坐標(biāo)和定值;若不存在,請說明理由.
查看答案和解析>>
科目:高中數(shù)學(xué) 來源: 題型:
【題目】在△ABC中,內(nèi)角A,B,C的對邊分別為a,b,c,已知向量 與 平行.
(1)求 的值;
(2)若bcosC+ccosB=1,△ABC周長為5,求b的長.
查看答案和解析>>
科目:高中數(shù)學(xué) 來源: 題型:
【題目】如圖,O為總信號源點(diǎn),A,B,C是三個居民區(qū),已知A,B都在O的正東方向上,OA=10km,OB=20km,C在O的北偏西45°方向上,CO=5 km.
(1)求居民區(qū)A與C的距離;
(2)現(xiàn)要經(jīng)過點(diǎn)O鋪設(shè)一條總光纜直線EF(E在直線OA的上方),并從A,B,C分別鋪設(shè)三條最短分光纜連接到總光纜EF.假設(shè)鋪設(shè)每條分光纜的費(fèi)用與其長度的平方成正比,比例系數(shù)為m(m為常數(shù)).設(shè)∠AOE=θ(0≤θ<π),鋪設(shè)三條分光纜的總費(fèi)用為w(元). ①求w關(guān)于θ的函數(shù)表達(dá)式;
②求w的最小值及此時tanθ的值.
查看答案和解析>>
科目:高中數(shù)學(xué) 來源: 題型:
【題目】點(diǎn)A,B,C,D在同一個球的球面上,AB=BC= ,∠ABC=90°,若四面體ABCD體積的最大值為3,則這個球的表面積為( )
A.2π
B.4π
C.8π
D.16π
查看答案和解析>>
科目:高中數(shù)學(xué) 來源: 題型:
【題目】如圖,在四棱錐P﹣ABCD中,底面ABCD為菱形,∠BAD=60°,Q為AD的中點(diǎn),PA=PD=AD=2
(1)點(diǎn)M在線段PC上,PM=tPC,試確定t的值,使PA∥平面MQB;
(2)在(1)的條件下,若平面PAD⊥平面ABCD,求二面角M﹣BQ﹣C的大。
查看答案和解析>>
湖北省互聯(lián)網(wǎng)違法和不良信息舉報平臺 | 網(wǎng)上有害信息舉報專區(qū) | 電信詐騙舉報專區(qū) | 涉歷史虛無主義有害信息舉報專區(qū) | 涉企侵權(quán)舉報專區(qū)
違法和不良信息舉報電話:027-86699610 舉報郵箱:58377363@163.com