【題目】已知函數(shù)f(x)= ﹣ax+b,在點M(1,f(1))處的切線方程為9x+3y﹣10=0,求
(1)實數(shù)a,b的值;
(2)函數(shù)f(x)的單調(diào)區(qū)間以及在區(qū)間[0,3]上的最值.

【答案】
(1)解:因為在點M(1,f(1))處的切線方程為9x+3y﹣10=0,

所以切線斜率是k=﹣3

且9×1+3f(1)﹣10=0,

求得 ,即點

又函數(shù) ,則f′(x)=x2﹣a

所以依題意得

解得


(2)解:由(1)知

所以f′(x)=x2﹣4=(x+2)(x﹣2)

令f′(x)=0,解得x=2或x=﹣2

當(dāng)f′(x)>0x>2或x<﹣2;當(dāng)f′(x)<0﹣2<x<2

所以函數(shù)f(x)的單調(diào)遞增區(qū)間是(﹣∞,2),(2,+∞)

單調(diào)遞減區(qū)間是(﹣2,2)

又x∈[0,3]

所以當(dāng)x變化時,f(x)和f′(x)變化情況如下表:

X

0

(0,2)

2

(2,3)

3

f′(x)

0

+

0

f(x)

4

極小值

1

所以當(dāng)x∈[0,3]時,f(x)max=f(0)=4,


【解析】(1)求出曲線的斜率,切點坐標(biāo),求出函數(shù)的導(dǎo)數(shù),利用導(dǎo)函數(shù)值域斜率的關(guān)系,即可求出a,b.(2)求出導(dǎo)函數(shù)的符號,判斷函數(shù)的單調(diào)性以及求解閉區(qū)間的函數(shù)的最值.
【考點精析】利用利用導(dǎo)數(shù)研究函數(shù)的單調(diào)性和函數(shù)的最大(小)值與導(dǎo)數(shù)對題目進行判斷即可得到答案,需要熟知一般的,函數(shù)的單調(diào)性與其導(dǎo)數(shù)的正負(fù)有如下關(guān)系: 在某個區(qū)間內(nèi),(1)如果,那么函數(shù)在這個區(qū)間單調(diào)遞增;(2)如果,那么函數(shù)在這個區(qū)間單調(diào)遞減;求函數(shù)上的最大值與最小值的步驟:(1)求函數(shù)內(nèi)的極值;(2)將函數(shù)的各極值與端點處的函數(shù)值比較,其中最大的是一個最大值,最小的是最小值.

練習(xí)冊系列答案
相關(guān)習(xí)題

科目:高中數(shù)學(xué) 來源: 題型:

【題目】已知函數(shù)f(x)=loga(1+x),g(x)=loga(1﹣x),其中(a>0且a≠1),設(shè)h(x)=f(x)﹣g(x).
(1)求h(x)的定義域;
(2)判斷h(x)的奇偶性,并說明理由;
(3)若a=log327+log2,求使f(x)>1成立的x的集合.

查看答案和解析>>

科目:高中數(shù)學(xué) 來源: 題型:

【題目】已知f(x)是定義在[﹣1,1]上的奇函數(shù),且f(1)=1,若對任意m,n∈[﹣1,1],m+n≠0,都有
(1)用定義證明函數(shù)f(x)在定義域上是增函數(shù);
(2)若 ,求實數(shù)a的取值范圍;
(3)若不等式f(x)≤(1﹣2a)t+2對所有和x∈[﹣1,1],a∈[﹣1,1]都恒成立,求實數(shù)t的取值范圍.

查看答案和解析>>

科目:高中數(shù)學(xué) 來源: 題型:

【題目】圓O1和圓O2的極坐標(biāo)方程分別為ρ=4cosθ,ρ=-4sinθ
(1)把圓O1和圓O2的極坐標(biāo)方程化為直角坐標(biāo)方程;
(2)求經(jīng)過圓O1、圓O2交點的直線的直角坐標(biāo)方程

查看答案和解析>>

科目:高中數(shù)學(xué) 來源: 題型:

【題目】已知點在圓上, 的坐標(biāo)分別為, ,線段的垂直平分線交線段于點

1)求點的軌跡的方程;

2)設(shè)圓與點的軌跡交于不同的四個點,求四邊形的面積的最大值及相應(yīng)的四個點的坐標(biāo).

查看答案和解析>>

科目:高中數(shù)學(xué) 來源: 題型:

【題目】在極坐標(biāo)系中,已知曲線 ,求:
(1)兩曲線(含直線)的公共點 P 的極坐標(biāo)
(2)過點 P ,被曲線 截得的弦長為 的直線的極坐標(biāo)方程

查看答案和解析>>

科目:高中數(shù)學(xué) 來源: 題型:

【題目】某產(chǎn)品的三個質(zhì)量指標(biāo)分別為x,y,z,用綜合指標(biāo)S=x+y+z評價該產(chǎn)品的等級.若S≤4,則該產(chǎn)品為一等品.現(xiàn)從一批該產(chǎn)品中,隨機抽取10件產(chǎn)品作為樣本,其質(zhì)量指標(biāo)列表如下:

產(chǎn)品編號

A1

A2

A3

A4

A5

質(zhì)量指標(biāo)
x , yz

(1,1,2)

(2,1,1)

(2,2,2)

(1,1,1)

(1,2,1)

產(chǎn)品編號

A6

A7

A8

A9

A10

質(zhì)量指標(biāo)
x , y , z

(1,2,2)

(2,1,1)

(2,2,1)

(1,1,1)

(2,1,2)


(1)利用上表提供的樣本數(shù)據(jù)估計該批產(chǎn)品的一等品率.
(2)在該樣品的一等品中,隨機抽取2件產(chǎn)品, ①用產(chǎn)品編號列出所有可能的結(jié)果;
②設(shè)事件B為“在取出的2件產(chǎn)品中,每件產(chǎn)品的綜合指標(biāo)S都等于4”,求事件B發(fā)生的概率.

查看答案和解析>>

科目:高中數(shù)學(xué) 來源: 題型:

【題目】若函數(shù)y=f(x)的定義域是[0,4],則函數(shù)g(x)= 的定義域是(
A.[0,2]
B.[0,2)
C.[0,1)∪(1,2]
D.[0,4]

查看答案和解析>>

科目:高中數(shù)學(xué) 來源: 題型:

【題目】一列火車從重慶駛往北京,沿途有n個車站(包括起點站重慶和終點站北京).車上有一郵政車廂,每?恳徽颈阋断禄疖囈呀(jīng)過的各站發(fā)往該站的郵袋各1個,同時又要裝上該站發(fā)往以后各站的郵袋各1個,設(shè)從第k站出發(fā)時,郵政車廂內(nèi)共有郵袋ak個(k=1,2,…,n).
(1)求數(shù)列{ak}的通項公式;
(2)當(dāng)k為何值時,ak的值最大,求出ak的最大值.

查看答案和解析>>

同步練習(xí)冊答案