【題目】已知函數(shù)().
(1)當曲線在點處的切線的斜率大于時,求函數(shù)的單調(diào)區(qū)間;
(2)若 對恒成立,求的取值范圍.(提示:)
【答案】(1)詳見解析; (2).
【解析】試題分析:
(1)考查函數(shù)的定義域,且 ,由,得.分類討論:
當時,的單調(diào)遞增區(qū)間為;
當時,的單調(diào)遞減區(qū)間為.
(2)構(gòu)造新函數(shù),令 ,,
則 ,,分類討論:
①當時,可得.
②當時, .
綜上所述,.
試題解析:
(1)的定義域為, ,,.
由,得.當時,,的單調(diào)遞增區(qū)間為;
當時,,的單調(diào)遞減區(qū)間為.
(2)令 ,,
則 ,,
①當時,,所以在上單調(diào)遞減,所以當,,故只需,即,即,所以.
②當時,令,得.
當時,,單調(diào)遞增;當時,,單調(diào)遞減.
所以當時,取得最大值.
故只需,即 ,
化簡得 ,
令,得().
令 (),則 ,
令,,
所以在上單調(diào)遞增,又,,所以,,所以在上單調(diào)遞減,在上遞增,
而, ,所以上恒有,
即當時, .
綜上所述,.
科目:高中數(shù)學 來源: 題型:
【題目】如圖莖葉圖記錄了甲、乙兩組各四名同學的植樹棵數(shù).乙組記錄中有一個數(shù)據(jù)模糊,無法確認,在圖中以Z表示.
(1)如果Z=8,求乙組同學植樹棵數(shù)的平均數(shù)和方差;
(2)如果Z=9,分別從甲、乙兩組中隨機選取一名同學,求這兩名同學的植樹總棵數(shù)為19的概率.
查看答案和解析>>
科目:高中數(shù)學 來源: 題型:
【題目】已知f(x)=2+log3x,x∈[1,9],則函數(shù)y=[f(x)]2+f(x2)的最大值為( )
A.6
B.22
C.﹣3
D.13
查看答案和解析>>
科目:高中數(shù)學 來源: 題型:
【題目】△ABC的內(nèi)角A,B,C的對邊分別為a,b,c,已知2cosC(acosB+bcosA)=c.
(Ⅰ)求C;
(Ⅱ)若c= ,△ABC的面積為 ,求△ABC的周長.
查看答案和解析>>
科目:高中數(shù)學 來源: 題型:
【題目】給出定義:若m﹣ <x≤m+ (其中m為整數(shù)),則m叫做離實數(shù)x最近的整數(shù),記作{x},即{x}=m,設函數(shù)f(x)=x﹣{x},二次函數(shù)g(x)=ax2+bx,若函數(shù)y=f(x)與y=g(x)的圖象有且只有一個公共點,則a,b的取值不可能是( )
A.a=﹣4,b=1
B.a=﹣2,b=﹣1
C.a=4,b=﹣1
D.a=5,b=1
查看答案和解析>>
科目:高中數(shù)學 來源: 題型:
【題目】已知點是拋物線的焦點, 若點在上,且.
(1)求的值;
(2)若直線經(jīng)過點且與交于(異于)兩點, 證明: 直線與直線的斜率之積為常數(shù).
查看答案和解析>>
科目:高中數(shù)學 來源: 題型:
【題目】如圖,在四棱錐P﹣ABCD中,側(cè)面PAD⊥底面ABCD,側(cè)棱PA=PD= ,底面ABCD為直角梯形,其中BC∥AD,AB⊥AD,AD=2AB=2BC=2,O為AD中點.
(1)求證:PO⊥平面ABCD;
(2)求異面直線PB與CD所成角的余弦值;
(3)線段AD上是否存在點Q,使得它到平面PCD的距離為 ?若存在,求出 的值;若不存在,請說明理由.
查看答案和解析>>
科目:高中數(shù)學 來源: 題型:
【題目】設各項均為正數(shù)的數(shù)列{an}的前n項和為Sn , 滿足4Sn=an+12﹣4n﹣1,n∈N* , 且a2 , a5 , a14構(gòu)成等比數(shù)列.
(1)證明:a2= ;
(2)求數(shù)列{an}的通項公式;
(3)證明:對一切正整數(shù)n,有 .
查看答案和解析>>
湖北省互聯(lián)網(wǎng)違法和不良信息舉報平臺 | 網(wǎng)上有害信息舉報專區(qū) | 電信詐騙舉報專區(qū) | 涉歷史虛無主義有害信息舉報專區(qū) | 涉企侵權(quán)舉報專區(qū)
違法和不良信息舉報電話:027-86699610 舉報郵箱:58377363@163.com