在△ABC中,A=30°,B=105°,C=
2
,則a=
 
考點:正弦定理
專題:解三角形
分析:由已知可先求C,然后結合正弦定理
a
sinA
=
c
sinC
可求
解答: 解:∵A=30°,B=105°,
∴C=45°
∵C=
2

由正弦定理可得,
a
sinA
=
c
sinC
,則a=
csinA
sinC
=
2
×
1
2
2
2
=1.
故答案為:1.
點評:本題主要考查了正弦定理在求解三角形中的簡單應用,屬于中檔題.
練習冊系列答案
相關習題

科目:高中數(shù)學 來源: 題型:

某班甲、乙兩名學同參加100米達標訓練,在相同條件下兩人10次訓練的成績(單位:秒)如下:
1 2 3 4 5 6 7 8 9 10
11.6 12.2 13.2 13.9 14.0 11.5 13.1 14.5 11.7 14.3
12.3 13.3 14.3 11.7 12.0 12.8 13.2 13.8 14.1 12.5
(1)從甲、乙兩人的10次訓練成績中各隨機抽取一次,求抽取的成績中至少有一個比12.8秒差的概率.
(2)后來經過對甲、乙兩位同學的多次成績的統(tǒng)計,甲、乙的成績都均勻分布在[11.5,14.5]之間,現(xiàn)甲、乙比賽一次,求甲、乙成績之差的絕對值小于0.8秒的概率.

查看答案和解析>>

科目:高中數(shù)學 來源: 題型:

在數(shù)列{an}中,a1=1,an+1=an+1,則a100=
 

查看答案和解析>>

科目:高中數(shù)學 來源: 題型:

高二某次月考的數(shù)學成績ξ服從正態(tài)分布N(110,σ2),已知P(100≤ξ≤110)=0.2,估計800名考生中數(shù)學成績在120分以上的人數(shù)為
 

查看答案和解析>>

科目:高中數(shù)學 來源: 題型:

已知等差數(shù)列{an}中,已知a1=17,d=-2,則a8=
 

查看答案和解析>>

科目:高中數(shù)學 來源: 題型:

設0<t<
π
2
,a是大于0的常數(shù),f(t)=
1
cost
+
a
1-cost
的最小值是16,則a=
 

查看答案和解析>>

科目:高中數(shù)學 來源: 題型:

已知
AB
=(2,3,1),
AC
=(4,5,3),則平面ABC的單位法向量為
 

查看答案和解析>>

科目:高中數(shù)學 來源: 題型:

公差不為零的等差數(shù)列的第1項、第6項、第21項恰好構成等比數(shù)列,則它的公比為
 

查看答案和解析>>

科目:高中數(shù)學 來源: 題型:

直線ρ=
3
2cosθ+sinθ
與直線l關于直線θ=
π
4
(ρ∈R)對稱,則l的極坐標方程是
 

查看答案和解析>>

同步練習冊答案