11.設(shè)等比數(shù)列{an}的前n項和為Sn,且滿足a6=8a3,則$\frac{S_6}{S_3}$=(  )
A.4B.5C.8D.9

分析 由a6=8a3,利用等比數(shù)列項公式q=2,由此能求出$\frac{S_6}{S_3}$.

解答 解:∵等比數(shù)列{an}的前n項和為Sn,且滿足a6=8a3,
∴$\frac{{a}_{6}}{{a}_{3}}$=q3=8,解得q=2,
∴$\frac{S_6}{S_3}$=$\frac{1-{q}^{6}}{1-{q}^{3}}$=1+q3=9.
故選:D.

點評 本題考查等差數(shù)列的前6項和與前3項和的求法,是基礎(chǔ)題,解題時要認真審題,注意等差數(shù)列的性質(zhì)的合理運用.

練習冊系列答案
相關(guān)習題

科目:高中數(shù)學 來源: 題型:解答題

1.如圖,橢圓C:$\frac{x^2}{a^2}+\frac{y^2}{b^2}=1({a>b>0})$的離心率為$\frac{{\sqrt{3}}}{2}$,以橢圓C的上頂點T為圓心作圓T:x2+(y-1)2=r2(r>0),圓T與橢圓C在第一象限交于點A,在第二象限交于點B.
(Ⅰ)求橢圓C的方程;
(Ⅱ)求$\overrightarrow{TA}•\overrightarrow{TB}$的最小值,并求出此時圓T的方程;
(Ⅲ)設(shè)點P是橢圓C上異于A,B的一點,且直線PA,PB分別與Y軸交于點M,N,O為坐標原點,求證:|OM|•|ON|為定值.

查看答案和解析>>

科目:高中數(shù)學 來源: 題型:填空題

2.已知函數(shù)f(x)=$\left\{\begin{array}{l}{{x}^{3},x≤a}\\{{x}^{2},x>a}\end{array}\right.$,若a=$\frac{1}{2}$,則函數(shù)g(x)=f(x)-1有1個零點,若存在示數(shù)b,使函數(shù)h(x)=f(x)-b有兩個零點,則a的取值范圍是a<0或a>1.

查看答案和解析>>

科目:高中數(shù)學 來源: 題型:選擇題

19.一個幾何體的三視圖如圖所示,則其體積為(  )
A.π+2B.2π+4C.π+4D.2π+2

查看答案和解析>>

科目:高中數(shù)學 來源: 題型:填空題

6.已知函數(shù)f(x)=lnx-3x,則曲線y=f(x)在點(1,f(1))處的切線方程是2x+y+1=0.

查看答案和解析>>

科目:高中數(shù)學 來源: 題型:選擇題

16.在平面直角坐標系xOy中,已知橢圓$\frac{x^2}{a^2}+\frac{y^2}{b^2}=1({a>b>0})$的上下頂點分別為A,B,右頂點為C,右焦點為F,延長BF與AC交于點P,若O,F(xiàn),P,A四點共圓,則該橢圓的離心率為( 。
A.$\frac{{\sqrt{2}-1}}{2}$B.$\frac{{\sqrt{3}-1}}{2}$C.$\frac{{\sqrt{5}-1}}{2}$D.$\frac{{\sqrt{5}-\sqrt{2}}}{2}$

查看答案和解析>>

科目:高中數(shù)學 來源: 題型:解答題

3.設(shè)函數(shù)f(x)=e2x,g(x)=kx+1(k∈R).
(Ⅰ)若直線y=g(x)和函數(shù)y=f(x)的圖象相切,求k的值;
(Ⅱ)當k>0時,若存在正實數(shù)m,使對任意x∈(0,m),都有|f(x)-g(x)|>2x恒成立,求k的取值范圍.

查看答案和解析>>

科目:高中數(shù)學 來源: 題型:解答題

20.已知函數(shù)f(x)=ex,g(x)=kx+1,且直線y=g(x)和函數(shù)y=f(x)的圖象相切.
(Ⅰ)求實數(shù)k的值;
(Ⅱ)設(shè)h(x)=f(x)-g(x),若不等式(m-x)h′(x)<x+1對任意x∈(0,+∞)恒成立(m∈Z,h′(x)為h(x)的導函數(shù)),求m的最大值..

查看答案和解析>>

科目:高中數(shù)學 來源: 題型:選擇題

1.已知a>0,x,y滿足約束條件$\left\{\begin{array}{l}x≥1\\ x+y≤2\\ ax-y-2a≤0\end{array}\right.$,z=x+2y的最小值為-2,則a=( 。
A.$\frac{1}{2}$B.$\frac{3}{2}$C.1D.2

查看答案和解析>>

同步練習冊答案