【題目】已知數(shù)列{an}的通項公式an=﹣n2+8n﹣12,前n項和為Sn,若n>m,則Sn﹣Sm的最大值是( )
A.5B.10C.15D.20
【答案】B
【解析】
由數(shù)列的通項公式可得Sn﹣Sm=am+1+am+2+…+an,可得當(dāng)am+1+am+2+…+an最大時,Sn﹣Sm取得最大值,由an≥0,解不等式,計算即可得到所求最大值.
解:根據(jù)題意,數(shù)列{an}的通項公式是,
其前n項和是Sn,n>m,有Sn﹣Sm=am+1+am+2+…+an,
即當(dāng)am+1+am+2+…+an最大時,Sn﹣Sm取得最大值;
若,且n∈N+,解得2≤n≤6,
即當(dāng)2≤n≤6時,an的值為正.
當(dāng)n=6,m=2時,S6﹣S2=a3+a4+a5+a6=3+4+3+0=10,
此時Sn﹣Sm取得最大值10.
故選:B.
科目:高中數(shù)學(xué) 來源: 題型:
【題目】設(shè)函數(shù).
(1)求函數(shù)的單調(diào)區(qū)間;
(2)己知函數(shù)有兩個極值點
①比較與的大。
②若函數(shù)在區(qū)間上有且只有一個零點,求實數(shù)的取值范圍.
查看答案和解析>>
科目:高中數(shù)學(xué) 來源: 題型:
【題目】共享單車是指由企業(yè)在校園、公交站點、商業(yè)區(qū)、公共服務(wù)區(qū)等場所提供的自行車單車共享服務(wù),由于其依托“互聯(lián)網(wǎng)+”,符合“低碳出行”的理念,已越來越多地引起了人們的關(guān)注.某部門為了對該市共享單車加強監(jiān)管,隨機選取了50人就該城市共享單車的推行情況進行問卷調(diào)查,并將問卷中的這50人根據(jù)其滿意度評分值(百分制)按照,,……分成5組,根據(jù)下面尚未完成并有局部污損的頻率分布表和頻率分布直方圖(如圖所示),計算,,,的值分別為( )
組別 | 分組 | 頻數(shù) | 頻率 |
第1組 | 8 | 0.16 | |
第2組 | ■ | ||
第3組 | 20 | 0.40 | |
第4組 | ■ | 0.08 | |
第5組 | 2 | ||
合計 | ■ | ■ |
A.16,0.04,0.032,0.004B.16,0.4,0.032,0.004
C.16,0.04,0.32,0.004D.12,0.04,0.032,0.04
查看答案和解析>>
科目:高中數(shù)學(xué) 來源: 題型:
【題目】點與定點的距離和它到直線的距離的比是常數(shù).
(Ⅰ)求點的軌跡的方程;
(Ⅱ)過坐標(biāo)原點的直線交軌跡于,兩點,軌跡上異于,的點滿足直線的斜率為.
(ⅰ)求直線的斜率;
(ⅱ)求面積的最大值.
查看答案和解析>>
科目:高中數(shù)學(xué) 來源: 題型:
【題目】為了調(diào)查某社區(qū)居民每天參加健身的時間,某機構(gòu)在該社區(qū)隨機采訪男性、女性各50名,其中每人每天的健身時間不少于1小時稱為“健身族”,否則稱其為"非健身族”,調(diào)查結(jié)果如下:
健身族 | 非健身族 | 合計 | |
男性 | 40 | 10 | 50 |
女性 | 30 | 20 | 50 |
合計 | 70 | 30 | 100 |
(1)若居民每人每天的平均健身時間不低于70分鐘,則稱該社區(qū)為“健身社區(qū)”. 已知被隨機采訪的男性健身族,男性非健身族,女性健身族,女性非健身族每人每天的平均健分時間分別是1.2小時,0.8小時,1.5小時,0.7小時,試估計該社區(qū)可否稱為“健身社區(qū)”?
(2)根據(jù)以上數(shù)據(jù),能否在犯錯誤的概率不超過5%的情況下認為“健身族”與“性別”有關(guān)?
參考公式: ,其中.
參考數(shù)據(jù):
0. 50 | 0. 40 | 0. 25 | 0. 05 | 0. 025 | 0. 010 | |
0. 455 | 0. 708 | 1. 321 | 3. 840 | 5. 024 | 6. 635 |
查看答案和解析>>
科目:高中數(shù)學(xué) 來源: 題型:
【題目】已知拋物線C:y2=4x的焦點為F,準線為l,過l上一點P作拋物線C的兩條切線,切點為A,B.
(1)求證:直線AB過焦點F;
(2)若|PA|=8,|PB|=6,求|PF|的值.
查看答案和解析>>
科目:高中數(shù)學(xué) 來源: 題型:
【題目】己知橢圓過點,,是兩個焦點.以橢圓的上頂點為圓心作半徑為的圓,
(1)求橢圓的方程;
(2)存在過原點的直線,與圓分別交于,兩點,與橢圓分別交于,兩點(點在線段上),使得,求圓半徑的取值范圍.
查看答案和解析>>
科目:高中數(shù)學(xué) 來源: 題型:
【題目】已知函數(shù).
(1)若函數(shù)在上是單調(diào)函數(shù),求實數(shù)的取值范圍;
(2)當(dāng)時,為函數(shù)在上的零點,求證:.
查看答案和解析>>
科目:高中數(shù)學(xué) 來源: 題型:
【題目】成都七中為了解班級衛(wèi)生教育系列活動的成效,對全校40個班級進行了一次突擊班級衛(wèi)生量化打分檢查(滿分100分,最低分20分).根據(jù)檢查結(jié)果:得分在評定為“優(yōu)”,獎勵3面小紅旗;得分在評定為“良”,獎勵2面小紅旗;得分在評定為“中”,獎勵1面小紅旗;得分在評定為“差”,不獎勵小紅旗.已知統(tǒng)計結(jié)果的部分頻率分布直方圖如下圖:
(1)依據(jù)統(tǒng)計結(jié)果的部分頻率分布直方圖,求班級衛(wèi)生量化打分檢查得分的中位數(shù);
(2)學(xué)校用分層抽樣的方法,從評定等級為“優(yōu)”、“良”、“中”、“差”的班級中抽取10個班級,再從這10個班級中隨機抽取2個班級進行抽樣復(fù)核,記抽樣復(fù)核的2個班級獲得的獎勵小紅旗面數(shù)和為,求的分布列與數(shù)學(xué)期望.
查看答案和解析>>
湖北省互聯(lián)網(wǎng)違法和不良信息舉報平臺 | 網(wǎng)上有害信息舉報專區(qū) | 電信詐騙舉報專區(qū) | 涉歷史虛無主義有害信息舉報專區(qū) | 涉企侵權(quán)舉報專區(qū)
違法和不良信息舉報電話:027-86699610 舉報郵箱:58377363@163.com