已知函數(shù)f(x)=x2-2(n+1)x+n2+5n-7.
(Ⅰ)設(shè)函數(shù)y=f(x)的圖象的頂點的縱坐標構(gòu)成數(shù)列{an},求證:{an}為等差數(shù)列;
(Ⅱ)設(shè)函數(shù)y=f(x)的圖象的頂點到x軸的距離構(gòu)成數(shù)列{bn},求{bn}的前n項和Sn.
【答案】
分析:(Ⅰ)配方,確定函數(shù)y=f(x)的圖象的頂點的縱坐標,從而可求數(shù)列{a
n}的通項,再證明為等差數(shù)列;
(Ⅱ)確定數(shù)列{b
n}的通項,進而可分段求出{b
n}的前n項和S
n.
解答:(Ⅰ)證明:∵f(x)=x
2-2(n+1)x+n
2+5n-7=[x-(n+1)]
2+3n-8,
∴a
n=3n-8,---------(2分)
∴a
n+1-a
n=3(n+1)-8-(3n-8)=3,
∴數(shù)列{a
n}為等差數(shù)列.---------(4分)
(Ⅱ)解:由題意知,b
n=|a
n|=|3n-8|,---------(6分)
∴當1≤n≤2時,b
n=8-3n,
;----(8分)
當n≥3時,b
n=3n-8,S
n=b
1+b
2+b
3+…+b
n=5+2+1+…+(3n-8)=
.---------(10分)
∴
.---------(12分)
點評:本題考查數(shù)列與函數(shù)的關(guān)系,考查等差數(shù)列的證明,考查數(shù)列的求和,考查分類討論的數(shù)學思想,正確求數(shù)列的通項是關(guān)鍵.