已知橢圓M:=1(a>b>0)的離心率為,且橢圓上一點(diǎn)與橢圓的兩個(gè)焦點(diǎn)構(gòu)成的三角形周長(zhǎng)為6+4
(Ⅰ)求橢圓M的方程;
(Ⅱ)設(shè)直線l與橢圓M交于A,B兩點(diǎn),且以AB為直徑的圓過橢圓的右頂點(diǎn)C,求△ABC面積的最大值,
年級(jí) | 高中課程 | 年級(jí) | 初中課程 |
高一 | 高一免費(fèi)課程推薦! | 初一 | 初一免費(fèi)課程推薦! |
高二 | 高二免費(fèi)課程推薦! | 初二 | 初二免費(fèi)課程推薦! |
高三 | 高三免費(fèi)課程推薦! | 初三 | 初三免費(fèi)課程推薦! |
科目:高中數(shù)學(xué) 來源:2010年江蘇省高二上學(xué)期期末測(cè)試數(shù)學(xué)試卷 題型:解答題
(本小題滿分15分)如圖,已知橢圓:+=1(a>b>0)的長(zhǎng)軸AB長(zhǎng)為4,離心率e=,O為坐標(biāo)原點(diǎn),過B的直線l與x軸垂直.P是橢圓上異于A、B的任意一點(diǎn),PH⊥x軸,H為垂足,延長(zhǎng)HP到點(diǎn)Q使得HP=PQ,連結(jié)AQ延長(zhǎng)交直線于點(diǎn)M,N為的中點(diǎn).
(1)求橢圓的方程;
(2)證明:Q點(diǎn)在以為直徑的圓上;
(3)試判斷直線QN與圓的位置關(guān)系.
查看答案和解析>>
科目:高中數(shù)學(xué) 來源: 題型:
已知橢圓C:=1(a>b>0)的右準(zhǔn)線l的方程為x=,短軸長(zhǎng)為2.
(1)求橢圓C的方程;
(2)過定點(diǎn)B(1,0)作直線l與橢圓C相交于P,Q(異于A1,A2)兩點(diǎn),設(shè)直線PA1與直線QA2相交于點(diǎn)M(2x0,y0).
①試用x0,y0表示點(diǎn)P,Q的坐標(biāo);
②求證:點(diǎn)M始終在一條定直線上.
查看答案和解析>>
科目:高中數(shù)學(xué) 來源: 題型:
已知橢圓C:=1(a>b>0)的右準(zhǔn)線l的方程為x=,短軸長(zhǎng)為2.
(1)求橢圓C的方程;
(2)過定點(diǎn)B(1,0)作直線l與橢圓C相交于P,Q(異于A1,A2)兩點(diǎn),設(shè)直線PA1與直線QA2相交于點(diǎn)M(2x0,y0).
①試用x0,y0表示點(diǎn)P,Q的坐標(biāo);
②求證:點(diǎn)M始終在一條定直線上.
查看答案和解析>>
科目:高中數(shù)學(xué) 來源: 題型:
已知橢圓C:=1(a>b>0),F1、F2分別為橢圓C的左、右焦點(diǎn),A1、A2分別為橢圓C的左、右頂點(diǎn),過右焦點(diǎn)F2且垂直于x軸的直線與橢圓C在第一象限的交點(diǎn)為M(,2).
(1)求橢圓C的標(biāo)準(zhǔn)方程;
(2)直線l:x=my+1與橢圓C交于P、Q兩點(diǎn),直線A1P與A2Q交于點(diǎn)S.試問:當(dāng)直線l變化時(shí),點(diǎn)S是否恒在一條定直線上?若是,請(qǐng)寫出這條定直線的方程,并證明你的結(jié)論:若不是,請(qǐng)說明理由.
查看答案和解析>>
百度致信 - 練習(xí)冊(cè)列表 - 試題列表
湖北省互聯(lián)網(wǎng)違法和不良信息舉報(bào)平臺(tái) | 網(wǎng)上有害信息舉報(bào)專區(qū) | 電信詐騙舉報(bào)專區(qū) | 涉歷史虛無主義有害信息舉報(bào)專區(qū) | 涉企侵權(quán)舉報(bào)專區(qū)
違法和不良信息舉報(bào)電話:027-86699610 舉報(bào)郵箱:58377363@163.com