已知函數(shù)
(1)當時,求曲線在點處的切線方程;
(2)當時,討論的單調(diào)性.

(1);(2)詳見解析.

解析試題分析:本題主要考查導數(shù)的運算、利用導數(shù)求曲線的切線方程、利用導數(shù)求函數(shù)的單調(diào)性等基礎知識,考查學生的分析問題解決問題的能力、計算能力.第一問,先將代入得到表達式,對求導,將切點的橫坐標2代入中得到切線的斜率k,再將切點的橫坐標2代入到中,得到切點的縱坐標,最后利用點斜式寫出切線方程;第二問,討論的單調(diào)性即討論的正負,即討論導數(shù)表達式分子的正負,所以構造函數(shù),通過分析題意,將分成、多種情況,分類討論,判斷的正負,從而得到的單調(diào)性.
試題解析:(1)當時,
       6分
(2)因為
所以 ,
        8分
(i)當a=0時,
所以當時g(x)>0, 此時函數(shù)單調(diào)遞減,
x∈(1,∞)時,g(x)<0,此時函數(shù)f,(x)單調(diào)遞增。
(ii)當時,由,解得:        10分
①若,函數(shù)f(x)在上單調(diào)遞減,        11分
②若,在單調(diào)遞減,在上單調(diào)遞增.
③ 當a<0時,由于1/a-1<0,
x∈(0,1)時,g(x)>0,此時,函數(shù)f(x)單調(diào)遞減;
x∈(1,∞)時,g(x)<0 ,,此時函數(shù)單調(diào)遞增。
綜上所述:
當a≤ 0 時,函數(shù)f(x)在(0,1)上單調(diào)遞減;
函數(shù)f(x)在 (1, +∞) 上單調(diào)遞增
時,函數(shù)f(x)在(0, + ∞)上單調(diào)遞減
時,函數(shù)f(x)在上單調(diào)遞減;
函數(shù) f(x)在上單調(diào)遞增;   14分
考點:導數(shù)的運算、利用導數(shù)求曲線的切線方程、利用導數(shù)求函數(shù)的單調(diào)性.

練習冊系列答案
相關習題

科目:高中數(shù)學 來源: 題型:解答題

已知函數(shù)
(Ⅰ)當時,求在區(qū)間上的最值;
(Ⅱ)討論函數(shù)的單調(diào)性.

查看答案和解析>>

科目:高中數(shù)學 來源: 題型:解答題

已知函數(shù)的減區(qū)間是(-2,2)
(1)試求m,n的值;
(2)求過點且與曲線相切的切線方程;
(3)過點A(1,t),是否存在與曲線相切的3條切線,若存在,求實數(shù)t的取值范圍;若不存在,請說明理由.

查看答案和解析>>

科目:高中數(shù)學 來源: 題型:解答題

已知是實數(shù),函數(shù).
(1)若,求的值及曲線在點處的切線方程.
(2)求上的最大值.

查看答案和解析>>

科目:高中數(shù)學 來源: 題型:解答題

已知函數(shù)
(1)若函數(shù)在區(qū)間其中a >0,上存在極值,求實數(shù)a的取值范圍;
(2)如果當時,不等式恒成立,求實數(shù)k的取值范圍.

查看答案和解析>>

科目:高中數(shù)學 來源: 題型:解答題

函數(shù)
(1)求函數(shù)的極值;
(2)設函數(shù),對,都有,求實數(shù)m的取值范圍.

查看答案和解析>>

科目:高中數(shù)學 來源: 題型:解答題

已知的導函數(shù),,且函數(shù)的圖象過點
(1)求函數(shù)的表達式;
(2)求函數(shù)的單調(diào)區(qū)間和極值.

查看答案和解析>>

科目:高中數(shù)學 來源: 題型:解答題

已知函數(shù)f(x)=ax2-(a+2)x+ln x.
(1)當a=1時,求曲線y=f(x)在點(1,f(1))處的切線方程;
(2)當a>0時,若f(x)在區(qū)間[1,e]上的最小值為-2,求a的取值范圍;
(3)若對任意x1,x2∈(0,+∞),x1<x2,且f(x1)+2x1<f(x2)+2x2恒成立,求a的取值范圍.

查看答案和解析>>

科目:高中數(shù)學 來源: 題型:填空題

在點(0,1)處的切線方程為________________

查看答案和解析>>

同步練習冊答案