分析 利用G點為△ABC的重心,且$\overrightarrow{AG}•\overrightarrow{BG}$=0,進一步得到用 $\overrightarrow{BA}$、$\overrightarrow{BC}$表示,得到三邊關系,將所求轉化為三角的弦函數表示整理即得可.
解答 解:G為三角形ABC的重心,且$\overrightarrow{AG}•\overrightarrow{BG}$=0,
∴$\frac{\overrightarrow{AB}+\overrightarrow{AC}}{3}$•$\frac{\overrightarrow{BA}+\overrightarrow{BC}}{3}$=0,
即 $\frac{\overrightarrow{AB}+\overrightarrow{AC}}{3}$•$\frac{\overrightarrow{AC}-2\overrightarrow{AB}}{3}$=0,∴b2-2c2-2bc•cosA=0.
又$\frac{1}{tanA}$+$\frac{1}{tanB}$=$\frac{2λ}{tanC}$,
即 $\frac{cosA}{sinA}$+$\frac{cosB}{sinB}$=$\frac{2λcosC}{sinC}$,
∴2λ=( $\frac{cosA}{sinA}$+$\frac{cosB}{sinB}$)•$\frac{sinC}{cosC}$
=$\frac{sinBcosA+cosBsinA}{sinAsinB}$•$\frac{sinC}{cosC}$
=$\frac{sin(A+B)}{sinAsinB}$•$\frac{sinC}{cosC}$
=$\frac{sin2C}{sinAsinBcosC}$
=$\frac{{c}^{2}}{ab•\frac{{a}^{2}{+b}^{2}{-c}^{2}}{2ab}}$=$\frac{1}{2}$,
故λ=$\frac{1}{4}$,
故答案為:$\frac{1}{4}$.
點評 本題考查了三角形重心的性質以及數量積的運算和余弦定理的運用;關鍵是得到三邊的關系,屬于中檔題.
科目:高中數學 來源: 題型:選擇題
A. | 16 | B. | 32 | C. | 48 | D. | $\frac{64}{3}$ |
查看答案和解析>>
科目:高中數學 來源: 題型:解答題
選修社會科學類 | 選修自然科學類 | 合計 | |
男生 | |||
女生 | |||
合計 |
P(K2≥k0) | 0.10 | 0.05 | 0.010 | 0.005 | 0.001 |
k0 | 2.706 | 3.841 | 6.635 | 7.879 | 10.828 |
查看答案和解析>>
科目:高中數學 來源: 題型:解答題
查看答案和解析>>
科目:高中數學 來源: 題型:解答題
查看答案和解析>>
科目:高中數學 來源: 題型:選擇題
A. | $\frac{1}{32}$ | B. | $\frac{1}{16}$ | C. | $\frac{1}{4}$ | D. | $\frac{1}{2}$ |
查看答案和解析>>
科目:高中數學 來源: 題型:選擇題
A. | $\frac{31}{50}$$\sqrt{2}$ | B. | $\frac{17}{50}$$\sqrt{2}$ | C. | -$\frac{17}{50}$$\sqrt{2}$ | D. | -$\frac{31}{50}$$\sqrt{2}$ |
查看答案和解析>>
科目:高中數學 來源: 題型:解答題
查看答案和解析>>
湖北省互聯網違法和不良信息舉報平臺 | 網上有害信息舉報專區(qū) | 電信詐騙舉報專區(qū) | 涉歷史虛無主義有害信息舉報專區(qū) | 涉企侵權舉報專區(qū)
違法和不良信息舉報電話:027-86699610 舉報郵箱:58377363@163.com