【題目】已知橢圓的離心率為,以橢圓E的長(zhǎng)軸和短軸為對(duì)角線的四邊形的面積為.

1)求橢圓E的方程;

2)若直線與橢圓E相交于A,B兩點(diǎn),設(shè)P為橢圓E上一動(dòng)點(diǎn),且滿足O為坐標(biāo)原點(diǎn)).當(dāng)時(shí),求的最小值.

【答案】(1)(2)

【解析】

1)由離心率及四邊形的面積和ab,c之間的關(guān)系求出橢圓的方程;

2)將直線與橢圓聯(lián)立求出兩根之和及兩根之積,,可得.進(jìn)而寫(xiě)出P的坐標(biāo),P在橢圓上求出m的范圍,進(jìn)而求出的表達(dá)式,由反比例函數(shù)的單調(diào)性求出它的最小值.

解:(1)依題意得,.以橢圓E的長(zhǎng)軸和短軸為對(duì)角線的四邊形的面積為,則,解得,.

所以橢圓E的方程為.

2)設(shè)A,B兩點(diǎn)的坐標(biāo)分別為,

聯(lián)立方程,

,,

因?yàn)?/span>,即,所以.

所以點(diǎn),又點(diǎn)P在橢圓C上,所以有,

化簡(jiǎn)得,

所以,化簡(jiǎn),因?yàn)?/span>,所以,

因?yàn)?/span>,

,,所以.

,則,

當(dāng)時(shí),取得最小值,最小值為.

練習(xí)冊(cè)系列答案
相關(guān)習(xí)題

科目:高中數(shù)學(xué) 來(lái)源: 題型:

【題目】為支援武漢的防疫,某醫(yī)院職工踴躍報(bào)名,其中報(bào)名的醫(yī)生18人,護(hù)士12人,醫(yī)技6人,根據(jù)需要,從中抽取一個(gè)容量為n的樣本參加救援隊(duì),若采用系統(tǒng)抽樣和分層抽樣,均不用剔除人員.當(dāng)抽取n+1人時(shí),若采用系統(tǒng)抽樣,則需剔除1個(gè)報(bào)名人員,則抽取的救援人員為________.

查看答案和解析>>

科目:高中數(shù)學(xué) 來(lái)源: 題型:

【題目】已知函數(shù),其中為常數(shù).

Ⅰ)若的圖像在處的切線經(jīng)過(guò)點(diǎn)(3,4),求的值;

Ⅱ)若,求證: ;

Ⅲ)當(dāng)函數(shù)存在三個(gè)不同的零點(diǎn)時(shí),求的取值范圍

查看答案和解析>>

科目:高中數(shù)學(xué) 來(lái)源: 題型:

【題目】選修4-4:坐標(biāo)系與參數(shù)方程

已知直線的參數(shù)方程為為參數(shù)).以坐標(biāo)原點(diǎn)為極點(diǎn),軸的正半軸為極軸建立極坐標(biāo)系,曲線的極坐標(biāo)方程為.

(1)求曲線的直角坐標(biāo)方程;

(2)已知點(diǎn),直線與曲線交于兩點(diǎn),且,求的值.

查看答案和解析>>

科目:高中數(shù)學(xué) 來(lái)源: 題型:

【題目】某市交管部門(mén)為了宣傳新交規(guī)舉辦交通知識(shí)問(wèn)答活動(dòng),隨機(jī)對(duì)該市15~65歲的人群抽樣,回答問(wèn)題統(tǒng)計(jì)結(jié)果如圖表所示.

組別

分組

回答正確的人數(shù)

回答正確的人數(shù)占本組的概率

第1組

[15,25)

5

0.5

第2組

[25,35)

0.9

第3組

[35,45)

27

第4組

[45,55)

0.36

第5組

[55,65)

3

(1)分別求出的值;

(2)從第2,3,4組回答正確的人中用分層抽樣方法抽取6人,則第2,3,4組每組應(yīng)各抽取多少人?

(3)在(2)的前提下,決定在所抽取的6人中隨機(jī)抽取2人頒發(fā)幸運(yùn)獎(jiǎng),求:所抽取的人中第2組至少有1人獲得幸運(yùn)獎(jiǎng)的概率.

查看答案和解析>>

科目:高中數(shù)學(xué) 來(lái)源: 題型:

【題目】我國(guó)在2018年社保又出新的好消息,之前流動(dòng)就業(yè)人員跨地區(qū)就業(yè)后,社保轉(zhuǎn)移接續(xù)的手續(xù)往往比較繁瑣,費(fèi)時(shí)費(fèi)力.社保改革后將簡(jiǎn)化手續(xù),深得流動(dòng)就業(yè)人員的贊譽(yù).某市社保局從2018年辦理社保的人員中抽取300人,得到其辦理手續(xù)所需時(shí)間(天)與人數(shù)的頻數(shù)分布表:

時(shí)間

人數(shù)

15

60

90

75

45

15

1)若300名辦理社保的人員中流動(dòng)人員210人,非流動(dòng)人員90人,若辦理時(shí)間超過(guò)4天的人員里非流動(dòng)人員有60人,請(qǐng)完成辦理社保手續(xù)所需時(shí)間與是否流動(dòng)人員的列聯(lián)表,并判斷是否有95%的把握認(rèn)為“辦理社保手續(xù)所需時(shí)間與是否流動(dòng)人員”有關(guān).

列聯(lián)表如下

流動(dòng)人員

非流動(dòng)人員

總計(jì)

辦理社保手續(xù)所需

時(shí)間不超過(guò)4

辦理社保手續(xù)所需

時(shí)間超過(guò)4

60

總計(jì)

210

90

300

2)為了改進(jìn)工作作風(fēng),提高效率,從抽取的300人中辦理時(shí)間為流動(dòng)人員中利用分層抽樣,抽取12名流動(dòng)人員召開(kāi)座談會(huì),其中3人要求交書(shū)面材料,3人中辦理的時(shí)間為的人數(shù)為,求出分布列及期望值.

附:

0.10

0.05

0.010

0.005

2.706

3.841

6.635

7.879

查看答案和解析>>

科目:高中數(shù)學(xué) 來(lái)源: 題型:

【題目】已知拋物線的頂點(diǎn)在原點(diǎn),過(guò)點(diǎn)A(-4,4)且焦點(diǎn)在x軸.

(1)求拋物線方程;

(2)直線l過(guò)定點(diǎn)B(-1,0)與該拋物線相交所得弦長(zhǎng)為8,求直線l的方程.

查看答案和解析>>

科目:高中數(shù)學(xué) 來(lái)源: 題型:

【題目】圓錐(其中為頂點(diǎn),為底面圓心)的側(cè)面積與底面積的比是,則圓錐與它外接球(即頂點(diǎn)在球面上且底面圓周也在球面上)的體積比為( )

A. B. C. D.

查看答案和解析>>

科目:高中數(shù)學(xué) 來(lái)源: 題型:

【題目】已知函數(shù),且曲線在點(diǎn)處的切線與直線垂直.

(1)求函數(shù)的單調(diào)區(qū)間;

(2)求證:時(shí),.

查看答案和解析>>

同步練習(xí)冊(cè)答案