【題目】如圖,在五面體中,平面,平面,.

1)求證:;

2)若,,且二面角的大小為,求二面角的大小.

【答案】1)證明見詳解;(2.

【解析】

1)由兩條直線同時垂直平面得兩直線平行,再利用線面平行的性質(zhì)定理,即可證明線線平行;

2)如圖,取的中點為,連接,設(shè)的交點為,連接,利用二面角的知識,求出,連接,再利用線面垂直推導(dǎo)線線垂直和二面角的知識,得出即為所求角,把對應(yīng)值代入即可得答案.

1)∵,

,,

,面

2)設(shè)的中點為,連接,

設(shè)的交點為,連接,

,,∴,

,∴,

,且面

∴二面角的平面角

又在中,,

是邊長為2的正三角形,

,

平面,

,

,

由(1)知,又,

∴四邊形為正方形,

,又,

∴四邊形為平行四邊形,

,

,

,

的中點為,連接,

,

,

,

,

即為二面角所成的平面角,

是邊長為2的正三角形,四邊形為正方形,

,,

,

,

∴二面角的平面角大小為.

練習(xí)冊系列答案
相關(guān)習(xí)題

科目:高中數(shù)學(xué) 來源: 題型:

【題目】平面上兩定點,動點滿為常數(shù)).

(Ⅰ)說明動點的軌跡(不需要求出軌跡方程);

(Ⅱ)當(dāng)時,動點的軌跡為曲線,過的直線交于兩點,已知點,證明:

查看答案和解析>>

科目:高中數(shù)學(xué) 來源: 題型:

【題目】把方程表示的曲線作為函數(shù)的圖象,則下列結(jié)論正確的是(

R上單調(diào)遞減

的圖像關(guān)于原點對稱

的圖象上的點到坐標(biāo)原點的距離的最小值為3

④函數(shù)不存在零點

A.①③B.①②③C.①③④D.①②③④

查看答案和解析>>

科目:高中數(shù)學(xué) 來源: 題型:

【題目】在直角坐標(biāo)系中,曲線的參數(shù)方程為為參數(shù)),以原點為極點,軸的非負半軸為極軸建立極坐標(biāo)系,直線的極坐標(biāo)方程為

1)求直線與曲線的普通方程;

2)若直線與曲線交于、兩點,點,求的值.

查看答案和解析>>

科目:高中數(shù)學(xué) 來源: 題型:

【題目】對于定義在上的函數(shù),若存在,使恒成立,則稱為“型函數(shù)”;若存在,使恒成立,則稱為“型函數(shù)”.已知函數(shù).

1)設(shè)函數(shù).,且為“型函數(shù)”,求的取值范圍;

2)設(shè)函數(shù).證明:當(dāng),為“1)型函數(shù)”;

3)若,證明存在唯一整數(shù),使得為“型函數(shù)”.

查看答案和解析>>

科目:高中數(shù)學(xué) 來源: 題型:

【題目】公元五世紀(jì),數(shù)學(xué)家祖沖之估計圓周率的值的范圍是:,為紀(jì)念數(shù)學(xué)家祖沖之在圓周率研究上的成就,某教師在講授概率內(nèi)容時要求學(xué)生從小數(shù)點后的6位數(shù)字1,4,15,9,2中隨機選取兩個數(shù)字做為小數(shù)點后的前兩位(整數(shù)部分3不變),那么得到的數(shù)字大于3.14的概率為(

A.B.C.D.

查看答案和解析>>

科目:高中數(shù)學(xué) 來源: 題型:

【題目】公元五世紀(jì),數(shù)學(xué)家祖沖之估計圓周率的值的范圍是:,為紀(jì)念數(shù)學(xué)家祖沖之在圓周率研究上的成就,某教師在講授概率內(nèi)容時要求學(xué)生從小數(shù)點后的6位數(shù)字14,1,59,2中隨機選取兩個數(shù)字做為小數(shù)點后的前兩位(整數(shù)部分3不變),那么得到的數(shù)字大于3.14的概率為(

A.B.C.D.

查看答案和解析>>

科目:高中數(shù)學(xué) 來源: 題型:

【題目】已知橢圓C 的左、右頂點分別為,,上、下頂點分別為,,四邊形的面積為,坐標(biāo)原點O到直線的距離為.

1)求橢圓C的方程;

2)若直線l與橢圓C相交于A,B兩點,點P為橢圓C上異于A,B的一點,四邊形為平行四邊形,探究:平行四邊形的面積是否為定值?若是,求出此定值;若不是,請說明理由.

查看答案和解析>>

科目:高中數(shù)學(xué) 來源: 題型:

【題目】如圖,在四棱錐中,底面為直角梯形,,,平面底面,的中點,是棱上的點,,,.

1)若的中點,求證:;

2)若二面角,設(shè),試確定的值.

查看答案和解析>>

同步練習(xí)冊答案