設(shè)定點(diǎn)A、B、C、D是以O(shè)為中心的正四面體的頂點(diǎn),用σ表示空間以直線OA為軸滿足條件σ(B)=C 的旋轉(zhuǎn),用τ 表示空間關(guān)于OCD 所在平面的鏡面反射,設(shè)l為過(guò)AB中點(diǎn)與CD中點(diǎn)的直線,用ω表示空間以l 為軸的180°旋轉(zhuǎn).設(shè)σ○τ 表示變換的復(fù)合,先作τ ,再作σ .則ω可以表示為(  )
A、σ○τ○σ○τ○σ
B、σ○τ○σ○τ○σ○τ
C、τ○σ○τ○σ○τ
D、σ○τ○σ○σ○τ○σ
考點(diǎn):空間向量的正交分解及其坐標(biāo)表示
專題:推理和證明
分析:由σ表示空間以直線OA為軸滿足條件σ(B)=C 的旋轉(zhuǎn),可得:σ(C)=D,σ(D)=B,σ(A)=A,由τ 表示空間關(guān)于OCD 所在平面的鏡面反射,可得:τ(A)=B,τ(B)=A,τ(C)=C,τ(D)=D,結(jié)合ω表示空間以l 為軸的180°旋轉(zhuǎn),則ω變換后:ω(B)=A,逐一分析四個(gè)答案復(fù)合變換后的結(jié)果,比照后,可得結(jié)論.
解答: 解:在如圖所示的正四面體ABCD中,

∵σ表示空間以直線OA為軸滿足條件σ(B)=C 的旋轉(zhuǎn),
∴σ(C)=D,σ(D)=B,σ(A)=A,
又∵τ 表示空間關(guān)于OCD 所在平面的鏡面反射,
∴τ(A)=B,τ(B)=A,τ(C)=C,τ(D)=D
ω表示空間以l 為軸的180°旋轉(zhuǎn),則ω變換后:ω(B)=A,
A中,σ○τ○σ○τ○σ(B)=σ○τ○σ○τ(C)=σ○τ○σ(c)=σ○τ(D)=σ(D)=B,不滿足要求;
B中,σ○τ○σ○τ○σ○τ(B)=σ○τ○σ○τ○σ(A)=σ○τ○σ○τ(A)=σ○τ○σ(B)=σ○τ(C)=σ(C)=D,不滿足要求;
C中,τ○σ○τ○σ○τ(B)=τ○σ○τ○σ(A)=τ○σ○τ(A)=τ○σ(B)=τ(C)=C,不滿足要求;
D中,σ○τ○σ○σ○τ○σ(B)=σ○τ○σ○σ○τ(C)=σ○τ○σ○σ(C)=σ○τ○σ(D)=σ○τ(B)=σ(A)=A,滿足要求;
故選:D.
點(diǎn)評(píng):本題考查的知識(shí)點(diǎn)是映射,空間變換,推理和證明,要求學(xué)生有較強(qiáng)的邏輯思維能力和空間想像能力,綜合性強(qiáng),理解幾種變換的對(duì)應(yīng)關(guān)系是解答的關(guān)鍵.
練習(xí)冊(cè)系列答案
相關(guān)習(xí)題

科目:高中數(shù)學(xué) 來(lái)源: 題型:

方程|log2x|+x-2=0解的個(gè)數(shù)為(  )個(gè).
A、1B、2C、3D、4

查看答案和解析>>

科目:高中數(shù)學(xué) 來(lái)源: 題型:

已知某函數(shù)y=f(x)(x∈R)上任意一點(diǎn)(x0,f(x0))處切線的斜率k=(x0+2)(x0-1)2,則該函數(shù)的單調(diào)增區(qū)間為( 。
A、(-∞,-2],[1,+∞)
B、(-2,1)
C、[-2,+∞)
D、(-∞,-2],(-2,1)

查看答案和解析>>

科目:高中數(shù)學(xué) 來(lái)源: 題型:

下列各函數(shù)中,最小值為2的是(  )
A、y=log2x+logx2
B、y=2x+2-x
C、y=
x2+3
x2+2
D、y=x+
1
x

查看答案和解析>>

科目:高中數(shù)學(xué) 來(lái)源: 題型:

設(shè)a=(
4
5
)
0.5
,b=(
5
4
)
0.4
,c=log
4
5
(log45),則(  )
A、a<b<c
B、a<c<b
C、c<b<a
D、c<a<b

查看答案和解析>>

科目:高中數(shù)學(xué) 來(lái)源: 題型:

已知函數(shù)f(x)滿足:①當(dāng)0≤x≤2時(shí),f(x)=(x-1)2,②?x∈[0,8],f(x-
1
2
)=f(x+
3
2
).若方程f(x)=Mlog2x在[0,8]上有偶數(shù)個(gè)根,則正數(shù)M的取值范圍是( 。
A、0<M≤
1
3
B、0<M≤
1
3
或M=1或2
C、0<M≤
1
3
或M=1或
1
2
D、0<M≤
1
3
或M=1或
1
2
或log62

查看答案和解析>>

科目:高中數(shù)學(xué) 來(lái)源: 題型:

若函數(shù)y=sinωx(ω>0)的圖象向左平移
3
個(gè)單位后與原圖象重合,則ω的最小值是( 。
A、
3
2
B、
3
4
C、
3
8
D、
9
8

查看答案和解析>>

科目:高中數(shù)學(xué) 來(lái)源: 題型:

已知a>2,b>2,則( 。
A、ab≥a+b
B、ab≤a+b
C、ab>a+b
D、ab<a+b

查看答案和解析>>

科目:高中數(shù)學(xué) 來(lái)源: 題型:

一個(gè)袋中有6個(gè)同樣大小的黑球,編號(hào)為1、2、3、4、5、6,現(xiàn)從中隨機(jī)取出3個(gè)球,以X表示取出球的最大號(hào)碼.則X所有可能取值的個(gè)數(shù)是( 。
A、6B、5C、4D、3

查看答案和解析>>

同步練習(xí)冊(cè)答案