【題目】設(shè)函數(shù)
(1)討論f(x)的單調(diào)性;
(2)求f(x)在區(qū)間[﹣2,2]的最大值和最小值.
【答案】(1)f(x)在(﹣∞,﹣2),(﹣1,+∞)上單調(diào)遞增,在(﹣2,﹣1)上單調(diào)遞減;(2)最大值為,最小值為
【解析】
(1)求出導(dǎo)函數(shù)f′(x),分別解不等式f′(x)>0和f′(x)<0即可得到單調(diào)區(qū)間;
(2)結(jié)合第(1)所求單調(diào)性,即可求出最值.
(1)f′(x)=x2+3x+2=(x+1)(x+2),
令f′(x)>0解得x<﹣2或x>﹣1;令f′(x)<0解得﹣2<x<﹣1,
故函數(shù)f(x)在(﹣∞,﹣2),(﹣1,+∞)上單調(diào)遞增,在(﹣2,﹣1)上單調(diào)遞減;
(2)由(1)可得x,f′(x),f(x)的變化情況,
x | ﹣2 | (﹣2,﹣1) | ﹣1 | (﹣1,2) | 2 |
f′(x) | 0 | ﹣ | 0 | + | |
f(x) | 減 | 極小值 | 增 |
故函數(shù)f(x)在區(qū)間[﹣2,2]上的最大值為,最小值為.
科目:高中數(shù)學(xué) 來源: 題型:
【題目】已知函數(shù).
(1)若為單調(diào)函數(shù),求a的取值范圍;
(2)若函數(shù)僅一個零點,求a的取值范圍.
查看答案和解析>>
科目:高中數(shù)學(xué) 來源: 題型:
【題目】已知函數(shù)的定義域為,設(shè),.
(Ⅰ)試確定t的取值范圍,使得函數(shù)在上為單調(diào)函數(shù);
(Ⅱ)求證:;
(Ⅲ)求證:對于任意的,總存在,滿足,又若方程在上有唯一解,請確定t的取值范圍.
查看答案和解析>>
科目:高中數(shù)學(xué) 來源: 題型:
【題目】四棱錐P﹣ABCD中,底面ABCD是邊長為2的菱形,側(cè)面PAD⊥底面ABCD,∠BCD=60°,,E是BC中點,點Q在側(cè)棱PC上.
(Ⅰ)求證:AD⊥PB;
(Ⅱ)若Q是PC中點,求二面角E﹣DQ﹣C的余弦值;
(Ⅲ)是否存在Q,使PA∥平面DEQ?若存在,求出的值;若不存在,說明理由.
查看答案和解析>>
科目:高中數(shù)學(xué) 來源: 題型:
【題目】設(shè)是各項均為非零實數(shù)的數(shù)列的前n項和,給出如下兩個命題上:命題p:是等差數(shù)列;命題q:等式對任意恒成立,其中k,b是常數(shù).
(1)若p是q的充分條件,求k,b的值;
(2)對于(1)中的k與b,問p是否為q的必要條件,請說明理由;
(3)若p為真命題,對于給定的正整數(shù)n和正數(shù)M,數(shù)列滿足條件,試求 的最大值.
查看答案和解析>>
科目:高中數(shù)學(xué) 來源: 題型:
【題目】中醫(yī)藥,是包括漢族和少數(shù)民族醫(yī)藥在內(nèi)的我國各民族醫(yī)藥的統(tǒng)稱,是反映中華民族對生命、健康和疾病的認識,具有悠久歷史傳統(tǒng)和獨特理論及技術(shù)方法的醫(yī)藥學(xué)體系,是中華民族的瑰寶.某科研機構(gòu)研究發(fā)現(xiàn),某品種中醫(yī)藥的藥物成分甲的含量(單位:克)與藥物功效(單位:藥物單位)之間具有關(guān)系.檢測這種藥品一個批次的5個樣本,得到成分甲的平均值為4克,標準差為克,則估計這批中醫(yī)藥的藥物功效的平均值為( )
A.22藥物單位B.20藥物單位C.12藥物單位D.10藥物單位
查看答案和解析>>
科目:高中數(shù)學(xué) 來源: 題型:
【題目】春節(jié)期間,受煙花爆竹集中燃放影響,我國多數(shù)城市空氣中濃度快速上升,特別是在大氣擴散條件不利的情況下,空氣質(zhì)量在短時間內(nèi)會迅速惡化年除夕18時和初一2時,國家環(huán)保部門對8個城市空氣中濃度監(jiān)測的數(shù)據(jù)如表單位:微克立方米.
除夕18時濃度 | 初一2時濃度 | |
北京 | 75 | 647 |
天津 | 66 | 400 |
石家莊 | 89 | 375 |
廊坊 | 102 | 399 |
太原 | 46 | 115 |
上海 | 16 | 17 |
南京 | 35 | 44 |
杭州 | 131 | 39 |
Ⅰ求這8個城市除夕18時空氣中濃度的平均值;
Ⅱ環(huán)保部門發(fā)現(xiàn):除夕18時到初一2時空氣中濃度上升不超過100的城市都是“禁止燃放煙花爆竹“的城市,濃度上升超過100的城市都未禁止燃放煙花爆竹從以上8個城市中隨機選取3個城市組織專家進行調(diào)研,記選到“禁止燃放煙花爆竹”的城市個數(shù)為X,求隨機變量y的分布列和數(shù)學(xué)期望;
Ⅲ記2017年除夕18時和初一2時以上8個城市空氣中濃度的方差分別為和,比較和的大小關(guān)系只需寫出結(jié)果.
查看答案和解析>>
科目:高中數(shù)學(xué) 來源: 題型:
【題目】田忌賽馬是《史記》中記載的一個故事,說的是齊國大將軍田忌經(jīng)常與齊國眾公子賽馬,孫臏發(fā)現(xiàn)田忌的馬和其他人的馬相差并不遠,都分為上、中、下三等.于是孫臏給田忌將軍獻策:比賽即將開始時,他讓田忌用下等馬對戰(zhàn)公子們的上等馬,用上等馬對戰(zhàn)公子們的中等馬,用中等馬對戰(zhàn)公子們的下等馬,從而使田忌贏得了許多賭注.假設(shè)田忌的各等級馬與某公子的各等級馬進行一場比賽,田忌獲勝的概率如下表所示:
比賽規(guī)則規(guī)定:一次比賽由三場賽馬組成,每場由公子和田忌各出一匹馬參賽,結(jié)果只有勝和負兩種,并且毎一方三場賽馬的馬的等級各不相同,三場比賽中至少獲勝兩場的一方為最終勝利者.
(1)如果按孫臏的策略比賽一次,求田忌獲勝的概率;
(2)如果比賽約定,只能同等級馬對戰(zhàn),每次比賽賭注1000金,即勝利者贏得對方1000金,每月比賽一次,求田忌一年賽馬獲利的數(shù)學(xué)期望.
查看答案和解析>>
科目:高中數(shù)學(xué) 來源: 題型:
【題目】已知拋物線焦點為,為拋物線上在第一象限內(nèi)一點,為原點,面積為.
(1)求拋物線方程;
(2)過點作兩條直線分別交拋物線于異于點的兩點,,且兩直線斜率之和為,
(i)若為常數(shù),求證直線過定點;
(ii)當(dāng)改變時,求(i)中距離最近的點的坐標.
查看答案和解析>>
湖北省互聯(lián)網(wǎng)違法和不良信息舉報平臺 | 網(wǎng)上有害信息舉報專區(qū) | 電信詐騙舉報專區(qū) | 涉歷史虛無主義有害信息舉報專區(qū) | 涉企侵權(quán)舉報專區(qū)
違法和不良信息舉報電話:027-86699610 舉報郵箱:58377363@163.com