如圖在棱長(zhǎng)為1的正方體中,M,N分別是線(xiàn)段和BD上的點(diǎn),且AM=BN=

(1)求||的最小值;
(2)當(dāng)||達(dá)到最小值時(shí),,是否都垂直,如果都垂直給出證明;如果不是都垂直,說(shuō)明理由.

(1);(2)垂直,詳見(jiàn)解析.

解析試題分析:(1)作,連.易知,再由余弦定理可得:,則,根據(jù)二次函數(shù)的知識(shí)即可得到其最小值;建立空間直角坐標(biāo)系,利用空間向量方法,寫(xiě)出,的坐標(biāo),利用數(shù)量積即可求證它們是否垂直.
試題解析:(1)作,連.易知
,由余弦定理可得:
,。當(dāng)時(shí),最小值=
(2)以點(diǎn)為坐標(biāo)原點(diǎn),以所在的直線(xiàn)分別為軸建立直角坐標(biāo)系,由(1)可知,,所以點(diǎn),,,,,,
,,,
,

即當(dāng)||達(dá)到最小值時(shí),是否都垂直.
考點(diǎn):本題主要考查了立體幾何中的向量方法,以及運(yùn)算能力和推理論證能力,屬于基礎(chǔ)題..

練習(xí)冊(cè)系列答案
相關(guān)習(xí)題

科目:高中數(shù)學(xué) 來(lái)源: 題型:解答題

如圖,四棱錐中,,底面為梯形,,,且,.

(1)求證:;
(2)求二面角的余弦值.

查看答案和解析>>

科目:高中數(shù)學(xué) 來(lái)源: 題型:解答題

如圖,四棱錐P-ABCD的底面ABCD是正方形,側(cè)棱PD⊥底面ABCDPDDC,EPC的中點(diǎn).

(1)證明:PA∥平面BDE
(2)求二面角B-DE-C的余弦值.

查看答案和解析>>

科目:高中數(shù)學(xué) 來(lái)源: 題型:解答題

如圖,正方形ADEF與梯形ABCD所在平面互相垂直,AD⊥CD,AB//CD,AB=AD=,點(diǎn)M在線(xiàn)段EC上且不與E、C垂合.

(1)當(dāng)點(diǎn)M是EC中點(diǎn)時(shí),求證:BM//平面ADEF;
(2)當(dāng)平面BDM與平面ABF所成銳二面角的余弦值為時(shí),求三棱錐M—BDE的體積.

查看答案和解析>>

科目:高中數(shù)學(xué) 來(lái)源: 題型:解答題

如圖,在四棱錐中,為平行四邊形,且平面,,的中點(diǎn),

(Ⅰ) 求證://
(Ⅱ)若, 求二面角的余弦值.

查看答案和解析>>

科目:高中數(shù)學(xué) 來(lái)源: 題型:解答題

如圖,在長(zhǎng)方體,中,,點(diǎn)在棱AB上移動(dòng).

(Ⅰ)證明:;
(Ⅱ)當(dāng)的中點(diǎn)時(shí),求點(diǎn)到面的距離;
(Ⅲ)等于何值時(shí),二面角的大小為.

查看答案和解析>>

科目:高中數(shù)學(xué) 來(lái)源: 題型:解答題

如圖所示,正方形與矩形所在平面互相垂直,,點(diǎn)的中點(diǎn).

(1)求證:∥平面;
(2)求證:;
(3)在線(xiàn)段上是否存在點(diǎn),使二面角的大小為?若存在,求出的長(zhǎng);若不存在,請(qǐng)說(shuō)明理由.

查看答案和解析>>

科目:高中數(shù)學(xué) 來(lái)源: 題型:解答題

如圖,正方體的棱長(zhǎng)為,、分別是的中點(diǎn).

⑴求多面體的體積;
⑵求與平面所成角的余弦值.

查看答案和解析>>

科目:高中數(shù)學(xué) 來(lái)源: 題型:解答題

(本小題14分)
如圖2,在四面體中,
(1)設(shè)的中點(diǎn),證明:在上存在一點(diǎn),使,并計(jì)算的值;
(2)求二面角的平面角的余弦值.

查看答案和解析>>

同步練習(xí)冊(cè)答案