【題目】已知曲線
(1)若曲線C1是一個圓,且點P(1,1)在圓C1外,求實數m的取值范圍;
(2)當m=2時,曲線關于直線x+1=0對稱的曲線為,設P為平面上的點,滿足:存在過P點的無窮多對互相垂直的直線,它們分別與曲線C1和曲線相交,且直線被曲線C1截得的弦長與直線l2被曲線C2截得的弦長總相等.求所有滿足條件的點P的坐標;
【答案】(1)(2)見解析
【解析】
(1)依題意得,解不等式組即可得解;
(2)先根據對稱求得圓的方程,由兩圓的半徑一樣所以弦長相等等價于圓心到直線距離相等,從而得設直線的斜率為,則直線,同理直線,,整理得或,只需或,求解即可.
(1)依題意得,解得,即實數的取值范圍是
(2)當時,圓 ,圓心,
半徑,圓,圓心,半徑.
因為要存在存在過P點的無窮多對互相垂直的直線,
所以必有無窮多對的斜率存在.設直線的斜率為,則
直線,同理直線,由于兩圓半徑相等,
要使得直線被曲線截得的弦長與直線被曲線截得的弦長總相等,
即,即,
即,所以
或|k-2-mk+n|+(-3+2k-m-kn)=0整理得或
因為對無窮個k都成立,所以
或,解得或即,
科目:高中數學 來源: 題型:
【題目】直線l:ax+ y﹣1=0與x,y軸的交點分別為A,B,直線l與圓O:x2+y2=1的交點為C,D.給出下列命題:p:a>0,S△AOB= ,q:a>0,|AB|<|CD|.則下面命題正確的是( )
A.p∧q
B.¬p∧¬q
C.p∧¬q
D.¬p∧q
查看答案和解析>>
科目:高中數學 來源: 題型:
【題目】設數列{an}和{bn}的項數均為m,則將數列{an}和{bn}的距離定義為 |ai﹣bi|.
(1)給出數列1,3,5,6和數列2,3,10,7的距離;
(2)設A為滿足遞推關系an+1= 的所有數列{an}的集合,{bn}和{cn}為A中的兩個元素,且項數均為m,若b1=2,c1=3,{bn}和{cn}的距離小于2016,求m的最大值;
(3)記S是所有7項數列{an|1≤n≤7,an=0或1}的集合,TS,且T中任何兩個元素的距離大于或等于3,證明:T中的元素個數小于或等于16.
查看答案和解析>>
科目:高中數學 來源: 題型:
【題目】據《中國新聞網》10月21日報道,全國很多省市將英語考試作為高考改革的重點,一時間“英語考試該如何改”引起廣泛關注.為了解某地區(qū)學生和包括老師、家長在內的社會人士對高考英語改革的看法,某媒體在該地區(qū)選擇了3600人調查,就是否“取消英語聽力”的問題,調查統(tǒng)計的結果如下表:
態(tài)度 | 應該取消 | 應該保留 | 無所謂 |
在校學生 | 2100人 | 120人 | y人 |
社會人士 | 600人 | x人 | z人 |
已知在全體樣本中隨機抽取1人,抽到持“應該保留”態(tài)度的人的概率為0.05.
(Ⅰ)現用分層抽樣的方法在所有參與調查的人中抽取360人進行問卷訪談,問應在持“無所謂”態(tài)度的人中抽取多少人?
(Ⅱ)在持“應該保留”態(tài)度的人中,用分層抽樣的方法抽取6人平均分成兩組進行深入交流,求第一組中在校學生人數ξ的分布列和數學期望.
查看答案和解析>>
科目:高中數學 來源: 題型:
【題目】選修4-4:坐標系與參數方程
以直角坐標系xOy的原點為極點,x軸的非負半軸為極軸建立極坐標系,且兩坐標系相同的長度單位.已知點N的極坐標為( , ),M是曲線C1:ρ=1上任意一點,點G滿足 ,設點G的軌跡為曲線C2 .
(1)求曲線C2的直角坐標方程;
(2)若過點P(2,0)的直線l的參數方程為 (t為參數),且直線l與曲線C2交于A,B兩點,求 的值.
查看答案和解析>>
科目:高中數學 來源: 題型:
【題目】在數列{an}中,設f(n)=an , 且f(n)滿足f(n+1)﹣2f(n)=2n(n∈N*),且a1=1.
(1)設 ,證明數列{bn}為等差數列;
(2)求數列{an}的前n項和Sn .
查看答案和解析>>
科目:高中數學 來源: 題型:
【題目】將參加夏令營的600名學生編號為:001,002,…,600,采用系統(tǒng)抽樣的方法抽取一個容量為50的樣本,且隨機抽得的編號為003.這600名學生分住在3個營區(qū),從001到300住在第1營區(qū),從301到495住在第2營區(qū),從496到600住在第3營區(qū),則3個營區(qū)被抽中的人數依次為( )
A. 26,16,8 B. 25,16,9
C. 25,17,8 D. 24,17,9
查看答案和解析>>
科目:高中數學 來源: 題型:
【題目】已知函數,.
(1)若曲線在處的切線的方程為,求實數的值;
(2)設,若對任意兩個不等的正數,都有恒成立,求實數的取值范圍;
(3)若在上存在一點,使得成立,求實數的取值范圍.
查看答案和解析>>
科目:高中數學 來源: 題型:
【題目】某闖關游戲有這樣一個環(huán)節(jié):該關卡有一道上了鎖的門,要想通過該關卡,要拿到門前密碼箱里的鑰匙,才能開門過關.但是密碼箱需要一個密碼才能打開,并且3次密碼嘗試錯誤,該密碼箱被鎖定,從而闖關失敗.某人到達該關卡時,已經找到了可能打開密碼箱的6個密碼(其中只有一個能打開密碼箱),他決定從中隨機地選擇1個密碼進行嘗試.若密碼正確,則通關成功;否則繼續(xù)嘗試,直至密碼箱被鎖定.
(1)求這個人闖關失敗的概率;
(2)設該人嘗試密碼的次數為X,求X的分布列和數學期望.
查看答案和解析>>
湖北省互聯網違法和不良信息舉報平臺 | 網上有害信息舉報專區(qū) | 電信詐騙舉報專區(qū) | 涉歷史虛無主義有害信息舉報專區(qū) | 涉企侵權舉報專區(qū)
違法和不良信息舉報電話:027-86699610 舉報郵箱:58377363@163.com