18.等差數(shù)列{an}中的兩項(xiàng)a2、a2016恰好是關(guān)于x的函數(shù)f(x)=2x2+8x+a(a∈R)的兩個(gè)零點(diǎn),且a1009+a1010>0,則使{an}的前n項(xiàng)和Sn取得最小值的n為( 。
A.1009B.1010C.1009,1010D.2016

分析 運(yùn)用二次方程的韋達(dá)定理,可得a2+a2016=-4,再由通項(xiàng)公式可得a1009=-2,又a1009+a1010>0,可得a1010>0,即有數(shù)列的單調(diào)性和正負(fù)項(xiàng)的情況,即可得到所求最小值n.

解答 解:由題意可得a2、a2016是2x2+8x+a=0的兩根,可得
a2+a2016=-4,
設(shè)公差為d,可得2a1+2016d=-4,
即a1+1008d=-2,即有a1009=-2,
又a1009+a1010>0,
可得a1010>0,
則公差d>0,數(shù)列單調(diào)遞增,且a1,a2,…,a1009<0,a1010>0,…
可得前n項(xiàng)和Sn取得最小值的n為1009.
故選:A.

點(diǎn)評(píng) 本題考查等差數(shù)列的通項(xiàng)公式的運(yùn)用和前n項(xiàng)和的最值求法,注意運(yùn)用數(shù)列的單調(diào)性,考查運(yùn)算能力,屬于中檔題.

練習(xí)冊(cè)系列答案
相關(guān)習(xí)題

科目:高中數(shù)學(xué) 來(lái)源: 題型:解答題

8.設(shè)橢圓C:$\frac{{x}^{2}}{{a}^{2}}$+$\frac{{y}^{2}}{^{2}}$=1(a>b>0),其離心率為$\frac{{\sqrt{3}}}{2}$,且橢圓上一點(diǎn)與橢圓的兩個(gè)焦點(diǎn)構(gòu)成的三角形的周長(zhǎng)為4+2$\sqrt{3}$.
(Ⅰ)求橢圓C的方程;
(Ⅱ)設(shè)曲線C的上、下頂點(diǎn)分別為A、B,點(diǎn)P在曲線C上,且異于點(diǎn)A、B,直線AP,BP與直線l:y=-2分別交于點(diǎn)M,N.
(1)設(shè)直線AP,BP的斜率分別為k1,k2,求證:k1k2為定值;
(2)求線段MN長(zhǎng)的最小值.

查看答案和解析>>

科目:高中數(shù)學(xué) 來(lái)源: 題型:解答題

9.在四棱錐P-ABCD中,BC∥AD,PA⊥AD,平面PAB⊥平面ABCD,∠BAD=120°,且PA=AB=BC=$\frac{1}{2}$AD=2.
(Ⅰ)求證:PA⊥平面ABCD;
(Ⅱ)求二面角B-PC-D的余弦值.

查看答案和解析>>

科目:高中數(shù)學(xué) 來(lái)源: 題型:解答題

6.春節(jié)期間,小明得到了10個(gè)紅包,每個(gè)紅包內(nèi)的金額互不相同,且都不超過(guò)200元.已知紅包內(nèi)金額在(0,50]的有3個(gè),在(50,100]的有4個(gè),在(100,200]的有3個(gè).
(I)若小明為了感謝父母,特地隨機(jī)拿出兩個(gè)紅包,給父母各一個(gè),求父母二人所得紅包金額分別在(50,100]和(100,200]的概率;
(Ⅱ)若小明要隨機(jī)拿出3個(gè)紅包的總金額給爺爺、奶奶和外公、外婆買(mǎi)禮物,設(shè)他所拿出的三個(gè)紅包金額在(50,100]的有X個(gè),求X的分布列及其期望.

查看答案和解析>>

科目:高中數(shù)學(xué) 來(lái)源: 題型:選擇題

13.若a、b是兩個(gè)正數(shù),且a,b,-2這三個(gè)數(shù)可適當(dāng)排序后成等差數(shù)列,也可適當(dāng)排序后成等比數(shù)列,則a+b的值等于( 。
A.3B.4C.5D.20

查看答案和解析>>

科目:高中數(shù)學(xué) 來(lái)源: 題型:解答題

3.已知f(x)是定義在區(qū)間[-1,1]上的函數(shù),且f(1)=1,若m,n∈[-1,1],m-n≠0時(shí),有$\frac{f(m)-f(n)}{m-n}$<0.
(1)判斷函數(shù)的單調(diào)性,需要說(shuō)明理由:
(2)解不等式:f(x+$\frac{1}{2}$)<f(1-x);
(3)若不等式f(x)≥t2-2at+1對(duì)?x∈[-1,1]與?t∈[1,2]恒成立,求實(shí)數(shù)a的取值范圍.

查看答案和解析>>

科目:高中數(shù)學(xué) 來(lái)源: 題型:選擇題

10.若復(fù)數(shù)(1+ai)2-2i(i為虛數(shù)單位)是純虛數(shù),則實(shí)數(shù)a=( 。
A.0B.±1C.1D.-1

查看答案和解析>>

科目:高中數(shù)學(xué) 來(lái)源: 題型:填空題

7.平行四邊形ABCD中,|$\overrightarrow{AB}$|=6,|$\overrightarrow{AD}$|=4,若點(diǎn)M,N滿足:$\overrightarrow{BM}$=3$\overrightarrow{MC}$,$\overrightarrow{DN}$=2$\overrightarrow{NC}$,則$\overrightarrow{AM}$$•\overrightarrow{NM}$=9.

查看答案和解析>>

科目:高中數(shù)學(xué) 來(lái)源: 題型:選擇題

8.已知函數(shù)f(x)滿足條件:當(dāng)x>0時(shí),f(x)+$\frac{1}{2}$xf′(x)>1,則下列不等式正確的是( 。
A.f(1)+3≥4f(2)B.f(1)+3>4f(2)C.f(1)+3<4f(2)D.f(2)+3>4f(4)

查看答案和解析>>

同步練習(xí)冊(cè)答案