數(shù)列{an}的前n項(xiàng)和記為Sn,已知a1=1,an+1=
n+2
n
Sn(n=1,2,3,…).證明:
(Ⅰ)數(shù)列{
Sn
n
}是等比數(shù)列;
(Ⅱ)Sn+1=4an
分析:(Ⅰ)要證數(shù)列{
Sn
n
}是等比數(shù)列;需證
Sn+1
n+1
Sn
n
=2
(n=1,2,3,…)成立,另外應(yīng)說明
S2
2
S1
1
=2
;
(Ⅱ)由(Ⅰ)知數(shù)列{
Sn
n
}是首項(xiàng)為1,公比為2的等比數(shù)列,可得Sn的通項(xiàng)公式,代入an+1=
n+2
n
Sn(n=1,2,3,…)可得Sn+1=4an.說明當(dāng)n=1時(shí),S2=a1+a2=4a1,等式成立.
解答:(I)證:由a1=1,an+1=
n+2
n
Sn(n=1,2,3,),
知a2=
2+1
1
S1=3a1,
S2
2
=
4a1
2
=2
,
S1
1
=1
,∴
S2
2
S1
1
=2

又an+1=Sn+1-Sn(n=1,2,3,…),則Sn+1-Sn=
n+2
n
Sn(n=1,2,3,),
∴nSn+1=2(n+1)Sn,
Sn+1
n+1
Sn
n
=2
(n=1,2,3,…),
故數(shù)列{
Sn
n
}是首項(xiàng)為1,公比為2的等比數(shù)列.
(II)證明:Sn+1=4an.當(dāng)n=1時(shí),S2=a1+a2=4a1,等式成立.
由(1)知:
Sn
n
=1×2n-1
,∴Sn=n2n-1
當(dāng)n≥2時(shí),4an=4(Sn-Sn-1)=2n(2n-n+1)=(n+1)2n=Sn+1,等式成立.
因此對于任意正整數(shù)n≥1都有Sn+1=4an
點(diǎn)評:要證一個(gè)數(shù)列是等比數(shù)列,利用定義,每一項(xiàng)與它的前一項(xiàng)之比為一個(gè)常數(shù),在這兒注意,n=1時(shí),不在其中,所以要加以說明;同樣第二個(gè)問題中,an+1=
n+2
n
Sn(n=1,2,3,…),這個(gè)式子也不包括a1應(yīng)加以說明.
練習(xí)冊系列答案
相關(guān)習(xí)題

科目:高中數(shù)學(xué) 來源: 題型:

設(shè)等比數(shù)列{an}的公比q≠1,Sn表示數(shù)列{an}的前n項(xiàng)的和,Tn表示數(shù)列{an}的前n項(xiàng)的乘積,Tn(k)表示{an}的前n項(xiàng)中除去第k項(xiàng)后剩余的n-1項(xiàng)的乘積,即Tn(k)=
Tn
ak
(n,k∈N+,k≤n),則數(shù)列
SnTn
Tn(1)+Tn(2)+…+Tn(n)
的前n項(xiàng)的和是
a12
2-q-q-1
(n+nq-
q-qn+1+1-q1-n
1-q
a12
2-q-q-1
(n+nq-
q-qn+1+1-q1-n
1-q
(用a1和q表示)

查看答案和解析>>

科目:高中數(shù)學(xué) 來源: 題型:

若數(shù)列{an}的通項(xiàng)an=
1
pn-q
,實(shí)數(shù)p,q滿足p>q>0且p>1,sn為數(shù)列{an}的前n項(xiàng)和.
(1)求證:當(dāng)n≥2時(shí),pan<an-1;
(2)求證sn
p
(p-1)(p-q)
(1-
1
pn
)

(3)若an=
1
(2n-1)(2n+1-1)
,求證sn
2
3

查看答案和解析>>

科目:高中數(shù)學(xué) 來源: 題型:

已知Sn是數(shù)列{an}的前n項(xiàng)和,an>0,Sn=
a
2
n
+an
2
,n∈N*,
(1)求證:{an}是等差數(shù)列;
(2)若數(shù)列{bn}滿足b1=2,bn+1=2an+bn,求數(shù)列{bn}的通項(xiàng)公式bn

查看答案和解析>>

科目:高中數(shù)學(xué) 來源: 題型:

(2012•商丘二模)數(shù)列{an}的前n項(xiàng)和為Sn,若數(shù)列{an}的各項(xiàng)按如下規(guī)律排列:
1
2
,
1
3
,
2
3
,
1
4
,
2
4
,
3
4
,
1
5
,
2
5
3
5
,
4
5
…,
1
n
,
2
n
,…,
n-1
n
,…有如下運(yùn)算和結(jié)論:
①a24=
3
8

②數(shù)列a1,a2+a3,a4+a5+a6,a7+a8+a9+a10,…是等比數(shù)列;
③數(shù)列a1,a2+a3,a4+a5+a6,a7+a8+a9+a10,…的前n項(xiàng)和為Tn=
n2+n
4
;
④若存在正整數(shù)k,使Sk<10,Sk+1≥10,則ak=
5
7

其中正確的結(jié)論是
①③④
①③④
.(將你認(rèn)為正確的結(jié)論序號都填上)

查看答案和解析>>

科目:高中數(shù)學(xué) 來源: 題型:

給出下列命題:
①若數(shù)列{an}的前n項(xiàng)和Sn=2n+1,則數(shù)列{an}為等比數(shù)列;
②在△ABC中,如果A=60°,a=
6
,b=4
,那么滿足條件的△ABC有兩解;
③設(shè)函數(shù)f(x)=x|x-a|+b,則函數(shù)f(x)為奇函數(shù)的充要條件是a2+b2=0;
④設(shè)直線系M:xcosθ+(y-2)sinθ=1(0≤θ≤2π),則M中的直線所能圍成的正三角形面積都相等.
其中真命題的序號是

查看答案和解析>>

同步練習(xí)冊答案