【題目】已知函數(shù)f(x)=3x2+bx+c,不等式f(x)>0的解集為(﹣∞,﹣2)∪(0,+∞).
(1)求函數(shù)f(x)的解析式;
(2)已知函數(shù)g(x)=f(x)+mx﹣2在(2,+∞)上單調遞增,求實數(shù)m的取值范圍.
【答案】
(1)解:∵不等式f(x)>0的解集為(﹣∞,﹣2)∪(0,+∞).
∴ ,
解得 ,
∴f(x)=3x2+6x;
(2)解:由(1)知,f(x)=3x2+6x,
∵g(x)=f(x)+mx﹣2,
∴g(x)=3x2+6x+mx﹣2,
=3[x+(1+ )]2﹣2﹣3×+(1+ )2,
∵函數(shù)g(x)在(2,+∞)上單調遞增,
∴﹣(1+ )≤2,
∴m≥﹣18;
∴實數(shù)m的取值范圍為m≥﹣18
【解析】(1)根據(jù)題意判斷出:﹣2和0是方程3x2+bx+c=0的兩個實根,代入列出方程,求出b和c的值;(2)由(1)求出g(x)的解析式,再求出對稱軸方程,根據(jù)條件和二次函數(shù)的單調性,列出不等式,求出m的范圍
【考點精析】掌握二次函數(shù)的性質和解一元二次不等式是解答本題的根本,需要知道當時,拋物線開口向上,函數(shù)在上遞減,在上遞增;當時,拋物線開口向下,函數(shù)在上遞增,在上遞減;求一元二次不等式解集的步驟:一化:化二次項前的系數(shù)為正數(shù);二判:判斷對應方程的根;三求:求對應方程的根;四畫:畫出對應函數(shù)的圖象;五解集:根據(jù)圖象寫出不等式的解集;規(guī)律:當二次項系數(shù)為正時,小于取中間,大于取兩邊.
科目:高中數(shù)學 來源: 題型:
【題目】某研究所計劃利用“神七”宇宙飛船進行新產(chǎn)品搭載實驗,計劃搭載新產(chǎn)品A、B,要根據(jù)該產(chǎn)品的研制成本、產(chǎn)品重量、搭載實驗費用和預計產(chǎn)生收益來決定具體安排,通過調查,有關數(shù)據(jù)如表:
產(chǎn)品A(件) | 產(chǎn)品B(件) | ||
研制成本、搭載費用之和(萬元) | 20 | 30 | 計劃最大資金額300萬元 |
產(chǎn)品重量(千克) | 10 | 5 | 最大搭載重量110千克 |
預計收益(萬元) | 80 | 60 |
試問:如何安排這兩種產(chǎn)品的件數(shù)進行搭載,才能使總預計收益達到最大,最大收益是多少?
查看答案和解析>>
科目:高中數(shù)學 來源: 題型:
【題目】已知方程x2+y2﹣2x﹣4y+m=0.
(1)若此方程表示圓,求m的取值范圍;
(2)若(1)中的圓與直線x+2y﹣4=0相交于M、N兩點,且OM⊥ON(O為坐標原點),求m的值.
查看答案和解析>>
科目:高中數(shù)學 來源: 題型:
【題目】如圖,隔河看兩目標A、B,但不能到達,在岸邊選取相距 km的C、D兩點,并測得∠ACB=75°,∠BCD=45°,∠ADC=30°,∠ADB=45°(A、B、C、D在同一平面內),求兩目標A、B之間的距離.
查看答案和解析>>
科目:高中數(shù)學 來源: 題型:
【題目】某城市為了滿足市民出行的需要和節(jié)能環(huán)保的要求,在公共場所提供單車共享服務,某部門為了對該城市共享單車進行監(jiān)管,隨機選取了位市民對共享單車的情況逬行問卷調査,并根根據(jù)其滿意度評分值(滿分分)制作的莖葉圖如圖所示:
(1)分別計算男性打分的平均數(shù)和女性打分的中位數(shù);
(2)從打分在分以下(不含分)的市民抽取人,求有女性被抽中的概率.
查看答案和解析>>
科目:高中數(shù)學 來源: 題型:
【題目】將函數(shù)y=sinx的圖象上所有點的橫坐標伸長到原來的2倍(縱坐標不變),再將所得的圖象向左平移 個單位,得到的圖象對應的解析式是( )
A.y=sin(2x+ )
B.y=sin( x+ )
C.y=sin( x+ )
D.y=sin(2x+ )
查看答案和解析>>
科目:高中數(shù)學 來源: 題型:
【題目】已知函數(shù)f(x)=(sinx+cosx)2+2cos2x﹣2.
(1)求函數(shù)f(x)的最小正周期及單調遞增區(qū)間;
(2)當x∈[ , ]時,求函數(shù)f(x)的值域.
查看答案和解析>>
湖北省互聯(lián)網(wǎng)違法和不良信息舉報平臺 | 網(wǎng)上有害信息舉報專區(qū) | 電信詐騙舉報專區(qū) | 涉歷史虛無主義有害信息舉報專區(qū) | 涉企侵權舉報專區(qū)
違法和不良信息舉報電話:027-86699610 舉報郵箱:58377363@163.com