【題目】為了打好脫貧攻堅(jiān)戰(zhàn),某貧困縣農(nóng)科院針對玉米種植情況進(jìn)行調(diào)研,力爭有效地改良玉米品種,為農(nóng)民提供技術(shù)支援,現(xiàn)對已選出的一組玉米的莖高進(jìn)行統(tǒng)計(jì),獲得莖葉圖如圖(單位:厘米),設(shè)莖高大于或等于180厘米的玉米為高莖玉米,否則為矮莖玉米.
(1)求出易倒伏玉米莖高的中位數(shù);
(2)根據(jù)莖葉圖的數(shù)據(jù),完成下面的列聯(lián)表:
抗倒伏 | 易倒伏 | |
矮莖 | ||
高莖 |
(3)根據(jù)(2)中的列聯(lián)表,是否可以在犯錯誤的概率不超過1%的前提下,認(rèn)為抗倒伏與玉米矮莖有關(guān)?
附:,
0.050 | 0.010 | 0.001 | |
3.841 | 6.635 | 10.828 |
年級 | 高中課程 | 年級 | 初中課程 |
高一 | 高一免費(fèi)課程推薦! | 初一 | 初一免費(fèi)課程推薦! |
高二 | 高二免費(fèi)課程推薦! | 初二 | 初二免費(fèi)課程推薦! |
高三 | 高三免費(fèi)課程推薦! | 初三 | 初三免費(fèi)課程推薦! |
科目:高中數(shù)學(xué) 來源: 題型:
【題目】已知函數(shù).
(1)若是的一個極值點(diǎn),判斷的單調(diào)性;
(2)若有兩個極值點(diǎn),,且,證明:.
查看答案和解析>>
科目:高中數(shù)學(xué) 來源: 題型:
【題目】如圖,設(shè)是橢圓的左焦點(diǎn),直線:與軸交于點(diǎn),為橢圓的長軸,已知,且,過點(diǎn)作斜率為直線與橢圓相交于不同的兩點(diǎn) ,
(1)當(dāng)時,線段的中點(diǎn)為,過作交軸于點(diǎn),求;
(2)求面積的最大值.
查看答案和解析>>
科目:高中數(shù)學(xué) 來源: 題型:
【題目】在平面直角坐標(biāo)系中,曲線(為參數(shù)),在以原點(diǎn)為極點(diǎn),軸正半軸為極軸的極坐標(biāo)系中,曲線.
(1)寫出的普通方程和的直角坐標(biāo)方程;
(2)設(shè)點(diǎn)在曲線上,點(diǎn)在曲線上,求的最小值及此時點(diǎn)的直角坐標(biāo).
查看答案和解析>>
科目:高中數(shù)學(xué) 來源: 題型:
【題目】某校高二年級的數(shù)學(xué)興趣小組釆取抽簽方式隨機(jī)分成甲、乙兩個小組進(jìn)行數(shù)學(xué)解題對抗賽.每組各20人,根據(jù)各位學(xué)生在第三次數(shù)學(xué)解題對抗賽中的解題時間(單位:秒)繪制了如下莖葉圖:
(1)請?jiān)u出第三次數(shù)學(xué)對抗賽的優(yōu)勝小組,并求出這40位學(xué)生完成第三次數(shù)學(xué)解題對抗賽所需時間的中位數(shù);
(2)對于(1)中的中位數(shù),根據(jù)這40位學(xué)生完成第三次數(shù)學(xué)對抗賽所需時間超過和不超過的人數(shù),完成下面的列聯(lián)表,并判斷能否有的把握認(rèn)為甲、乙兩個小組在此次的數(shù)學(xué)對抗賽中的成績有差異?
超過 | 不超過 | 總計(jì) | |
甲組 | |||
乙組 | |||
總計(jì) |
附:,
0.050 | 0.010 | 0.001 | |
3.841 | 6.635 | 10.828 |
查看答案和解析>>
科目:高中數(shù)學(xué) 來源: 題型:
【題目】已知函數(shù)()在上至少存在兩個不同的,滿足,且在上具有單調(diào)性,點(diǎn)和直線分別為圖象的一個對稱中心和一條對稱軸,則下列命題中正確的是( )
A.的最小正周期為
B.
C.在上是減函數(shù)
D.將圖象上每一點(diǎn)的橫坐標(biāo)伸長為原來的2倍(縱坐標(biāo)不變),得到的圖象,則
查看答案和解析>>
科目:高中數(shù)學(xué) 來源: 題型:
【題目】(1)在圓中有這樣的結(jié)論:對圓上任意一點(diǎn),設(shè)、是圓和軸的兩交點(diǎn),且直線和的斜率都存在,則它們的斜率之積為定值-1.試將該結(jié)論類比到橢圓,并給出證明.
(2)已知橢圓,,,設(shè)直線與橢圓交于不同于、的兩點(diǎn)、,記直線、、的斜率分別為、、.
(。┤糁本過定點(diǎn),則是否為定值.若是,請證明;若不是,請說明理由.
(ⅱ)若,求所有整數(shù),使得直線變化時,總有.
查看答案和解析>>
科目:高中數(shù)學(xué) 來源: 題型:
【題目】2019年底,湖北省武漢市等多個地區(qū)陸續(xù)出現(xiàn)感染新型冠狀病毒肺炎的患者.為及時有效地對疫情數(shù)據(jù)進(jìn)行流行病學(xué)統(tǒng)計(jì)分析,某地研究機(jī)構(gòu)針對該地實(shí)際情況,根據(jù)該地患者是否有武漢旅行史與是否有確診病例接觸史,將新冠肺炎患者分為四類:有武漢旅行史(無接觸史),無武漢旅行史(無接觸史),有武漢旅行史(有接觸史)和無武漢旅行史(有接觸史),統(tǒng)計(jì)得到以下相關(guān)數(shù)據(jù).
(1)請將列聯(lián)表填寫完整:
有接觸史 | 無接觸史 | 總計(jì) | |
有武漢旅行史 | 27 | ||
無武漢旅行史 | 18 | ||
總計(jì) | 27 | 54 |
(2)能否在犯錯誤的概率不超過0.025的前提下認(rèn)為有武漢旅行史與有確診病例接觸史有關(guān)系?
附:
0.15 | 0.10 | 0.05 | 0.025 | 0.010 | |
2.072 | 2.706 | 3.841 | 5.024 | 6.635 |
查看答案和解析>>
科目:高中數(shù)學(xué) 來源: 題型:
【題目】將四個不同的小球放入三個分別標(biāo)有1、2、3號的盒子中,不允許有空盒子的放法有多少種?下列結(jié)論正確的有( ).
A.B.C.D.18
查看答案和解析>>
湖北省互聯(lián)網(wǎng)違法和不良信息舉報(bào)平臺 | 網(wǎng)上有害信息舉報(bào)專區(qū) | 電信詐騙舉報(bào)專區(qū) | 涉歷史虛無主義有害信息舉報(bào)專區(qū) | 涉企侵權(quán)舉報(bào)專區(qū)
違法和不良信息舉報(bào)電話:027-86699610 舉報(bào)郵箱:58377363@163.com