16.在等差數(shù)列{an}中,a1=100,d=-2,求S50=2550.

分析 把已知數(shù)據(jù)代入等差數(shù)列的求和公式計算可得.

解答 解:∵在等差數(shù)列{an}中a1=100,d=-2,
∴S50=50a1+$\frac{50×49}{2}$d=2550
故答案為:2550

點評 本題考查等差數(shù)列的求和公式,屬基礎(chǔ)題.

練習(xí)冊系列答案
相關(guān)習(xí)題

科目:高中數(shù)學(xué) 來源: 題型:選擇題

6.如圖,設(shè)雙曲線C:$\frac{{x}^{2}}{{a}^{2}}$-$\frac{{y}^{2}}{^{2}}$=1(a>0,b>0)的左、右焦點分別為F1,F(xiàn)2,若以F1為圓心,以F1F2為半徑的圓與C交于A,B兩點(A在第二象限,B在第一象限),且F1A∥F2B,則雙曲線C的離心率為( 。
A.$\frac{3+\sqrt{17}}{4}$B.2C.$\frac{1+\sqrt{17}}{4}$D.3

查看答案和解析>>

科目:高中數(shù)學(xué) 來源: 題型:填空題

7.?dāng)?shù)列{an}是等比數(shù)列,且a1=2,q=$\frac{\sqrt{2}}{2}$,則${a}_{1}^{2}$+${a}_{2}^{2}$+…+${a}_{n}^{2}$=8$(1-\frac{1}{{2}^{n}})$.

查看答案和解析>>

科目:高中數(shù)學(xué) 來源: 題型:填空題

4.以直線y=$±\sqrt{3}$x為漸近線的雙曲線的離心率為2或$\frac{2\sqrt{3}}{3}$.

查看答案和解析>>

科目:高中數(shù)學(xué) 來源: 題型:選擇題

11.下面給出四個隨機變量:
①一高速公路上某收費站在1小時內(nèi)經(jīng)過的車輛數(shù)ξ;
②一個沿直線y=x進(jìn)行隨機運動的質(zhì)點,它在該直線上的位置η;
③某城市在1天內(nèi)發(fā)生的火警次數(shù);
④1天內(nèi)的溫度η.
其中是離散型隨機變量的是( 。
A.①②B.③④C.①③D.②④

查看答案和解析>>

科目:高中數(shù)學(xué) 來源: 題型:填空題

1.設(shè)2x-1=a,2y-1=b,則2x+y=4ab.

查看答案和解析>>

科目:高中數(shù)學(xué) 來源: 題型:解答題

8.4名教師、3名男生、2名女生排成一排,要求3名男生排在一起,2名女生排在一起,共有多少種不同的排隊方法?

查看答案和解析>>

科目:高中數(shù)學(xué) 來源: 題型:解答題

16.已知雙曲線x2-2y2=2的左、右兩個焦點為F1、F2,動點P滿足|PF1|+|PF2|=4.
(1)求動點P的軌跡E的方程;
(2)設(shè)過F2且不垂直于坐標(biāo)軸的動直線l交軌跡E于A、B兩點,問:線段OF2上是否存在一點D,使得以DA、DB為鄰邊的平行四邊形為菱形?作出判斷并證明.

查看答案和解析>>

科目:高中數(shù)學(xué) 來源: 題型:選擇題

17.如圖所示,A,B,C是雙曲線$\frac{{x}^{2}}{{a}^{2}}$-$\frac{{y}^{2}}{^{2}}$=1(a>0,b>0)上的三個點,AB經(jīng)過坐標(biāo)原點O,AC經(jīng)過雙曲線的右焦點F,若BF⊥AC,且|$\overrightarrow{AF}$|=a,則該雙曲線的離心率是( 。
A.$\frac{\sqrt{10}}{2}$B.$\sqrt{10}$C.$\frac{3}{2}$D.3

查看答案和解析>>

同步練習(xí)冊答案