【答案】
分析:(1)先求出其導(dǎo)函數(shù),利用f′(1)=2-2a=-14,解得a=8,以及切點坐標(biāo)和切線方程;再把a=8代入其導(dǎo)函數(shù)即可求出其單調(diào)區(qū)間;
(2)先求出其導(dǎo)函數(shù),再利用分類討論思想得到其在[1,2]上的單調(diào)性進(jìn)而求出其最大值,最后再把問題轉(zhuǎn)化為f(x)
max≤a
2-2a+4,即可求實數(shù)a的取值范圍.
解答:解:(1)∵f(x)=x
2+
,
∴f′(x)=2x-
,
根據(jù)題意有f′(1)=2-2a=-14,解得a=8,
此時切點坐標(biāo)是(1,17),故所求的切線方程是y-17=-14(x-1),即14x+y-31=0.
當(dāng)a=8時,f′(x)=2x-
=
.
令f′(x)>0,解得x>2,令f′(x)<0,解得x<2且x≠0,
故函數(shù)f(x)的單調(diào)遞增區(qū)間是(2,+∞);單調(diào)遞減區(qū)間是(-∞,0)和(0,2).
(2)由(1)知f′(x)=2x-
=
.
①若a≤1,則f′(x)>0在區(qū)間(1,2]上恒成立,f(x)在區(qū)間[1,2]上單調(diào)遞增,函數(shù)f(x)在區(qū)間[1,2]上的最大值為f(2)=4+a;
②若1<a<8,則在區(qū)間(1,a)上,f′(x)<0,函數(shù)f(x)單調(diào)遞減,在區(qū)間(a,2)上,f′(x)>0,函數(shù)f(x)單調(diào)遞增,
故函數(shù)f(x)在區(qū)間[1,2]上的最大值為f(1),f(2)中的較大者,f(1)-f(2)=1+2a-4-a=a-3,
故當(dāng)1<a≤3時,函數(shù)f(x)的最大值為f(2)=4+a,當(dāng)3<a<8時,函數(shù)f(x)的最大值為f(1)=1+2a;
③當(dāng)a≥8時,f′(x)<0在區(qū)間[1,2)上恒成立,函數(shù)f(x)在區(qū)間[1,2]上單調(diào)遞減,函數(shù)f(x)的最大值為f(1)=1+2a.
綜上可知,在區(qū)間[1,2]上,當(dāng)a≤3時,f(x)
max=4+a;當(dāng)a>3時,f(x)
max=1+2a.
不等式f(x)≤a
2-2a+4對任意的x∈[1,2]恒成立等價于在區(qū)間[1,2]上,f(x)
max≤a
2-2a+4,
故當(dāng)a≤3時,4+a≤a
2-2a+4,即a
2-3a≥0,解得a≤0或a=3;
當(dāng)a>3時,1+2a≤a
2-2a+4,即a
2-4a+3≥0,解得a>3.
故a的取值范圍是(-∞,0]∪[3,+∞).
點評:本題主要考查利用導(dǎo)數(shù)求閉區(qū)間上函數(shù)的最值和利用導(dǎo)數(shù)研究函數(shù)的單調(diào)性以及利用導(dǎo)數(shù)研究曲線上某點切線方程,是對導(dǎo)數(shù)知識的綜合考查,也是高考?碱}型.