精英家教網 > 高中數學 > 題目詳情
過雙曲線
x2
m
-
y2
n
=1(m>0,n>0)上的點P(
5
,-
3
)作圓x2+y2=m的切線,切點為A、B,若
PA
PB
=0,則該雙曲線的離心率的值是( 。
A.4B.3C.2D.
3
如圖,∵
PA
PB
=0
,∴
PA
PB
,
∴∠APB=90°,又PA=PB,PA,PB是圓的切線,
∴四邊形OAPB是正方形,
∴OA=
2
2
OP=
2
2
×2
2
=2,
m
=2,∴m=4,
又因為雙曲線
x2
m
-
y2
n
=1(m>0,n>0)上的點P(
5
,-
3
),
5
m
-
3
n
=1
,∴n=12,
則該雙曲線的離心率的值是
e=
c
a
=
4+12
2
=
16
2
=2

故選C.
練習冊系列答案
相關習題

科目:高中數學 來源:不詳 題型:填空題

雙曲線
x2
24tanα
-
y2
16cotα
=1(α為銳角)過定點(4
3
,4),則α=______.

查看答案和解析>>

科目:高中數學 來源:不詳 題型:單選題

若雙曲線的兩條漸近線的夾角為60°,則該雙曲線的離心率為( 。
A.2B.
6
3
C.2或
6
3
D.2或
2
3
3

查看答案和解析>>

科目:高中數學 來源:不詳 題型:填空題

雙曲線的漸近線方程是3x±4y=0,則雙曲線的離心率等于______.

查看答案和解析>>

科目:高中數學 來源:不詳 題型:填空題

已知實數4,m,9構成一個等比數列,m為等比中項,則圓錐曲線
x2
m
+y2=1
的離心率是______.

查看答案和解析>>

科目:高中數學 來源:不詳 題型:填空題

如圖,直線l⊥FH于H,O為FH的中點,曲線C1,C2是以F為焦點,l為準線的圓錐曲線(圖中只畫出曲線的一部分),那么圓錐曲線C1是______;圓錐曲線C2是______.

查看答案和解析>>

科目:高中數學 來源:不詳 題型:單選題

已知F是雙曲線x2-
y2
8
=1
的右焦點,A(-2,
3
)
,P是雙曲線右支上的動點,則|PA|-|PF|的最小值為( 。
A.0B.2C.4D.6

查看答案和解析>>

科目:高中數學 來源:不詳 題型:單選題

若雙曲線x2-
y2
a2
=1(a>0)的一條漸近線與直線x-2y+3=0垂直,則a是( 。
A.
1
4
B.2C.4D.16

查看答案和解析>>

科目:高中數學 來源:不詳 題型:單選題

已知曲線
x=4cosθ
y=2
3
sinθ
上一點P到點A(-2,0),B(2,0)的距離之差為2.則△PAB為( 。
A.銳角三角形B.直角三角形C.鈍角三角形D.等腰三角形

查看答案和解析>>

同步練習冊答案