【題目】年年初,新冠肺炎疫情防控工作全面有序展開.某社區(qū)對居民疫情防控知識進行了網(wǎng)上調(diào)研,調(diào)研成績?nèi)慷荚?/span>分到分之間.現(xiàn)從中隨機選取位居民的調(diào)研成績進行統(tǒng)計,繪制了如圖所示的頻率分布直方圖.

的值,并估計這位居民調(diào)研成績的中位數(shù);

在成績?yōu)?/span>,的兩組居民中,用分層抽樣的方法抽取位居民,再從位居民中隨機抽取位進行詳談.位居民的調(diào)研成績在的人數(shù),求隨機變量的分布列.

【答案】,中位數(shù)為分;隨機變量的分布列見解析.

【解析】

根據(jù)頻率之和為,由此算出的值,利用頻率分布直方圖求中位數(shù)的方法設(shè)中位數(shù)為,列式計算即可得出結(jié)論;

可知成績在,的居民人數(shù)分別為人,人,根據(jù)分層抽樣,可知抽取的位中,成績在的人數(shù)為人,成績在的人數(shù)為人,則的可能取值為,,求出相應(yīng)概率,列出相應(yīng)的分布列.

解:,

.

組的頻率之和為

組的頻率為,

因為,所以中位數(shù)在第.

設(shè)中位數(shù)為,則,解得.

所以位居民調(diào)研成績的中位數(shù)為.

成績在,的居民人數(shù)分別為人,人,

所以在的居民中應(yīng)抽取(人),

的居民中應(yīng)抽取(人).

的可能取值為,,,

,

,

,

所以的分布列為:

練習(xí)冊系列答案
相關(guān)習(xí)題

科目:高中數(shù)學(xué) 來源: 題型:

【題目】個零件,已知其中有個正品、個次品現(xiàn)隨機地逐一檢查,則恰好在檢查第個零件查出了所有次品的概率為( ).

A. B.

C. D.

查看答案和解析>>

科目:高中數(shù)學(xué) 來源: 題型:

【題目】已知一個12位的正整數(shù)可以被37整除,且只包含數(shù)碼,求這個12為數(shù)的各位數(shù)字之和的所有可能值.

查看答案和解析>>

科目:高中數(shù)學(xué) 來源: 題型:

【題目】已知橢圓中心在原點,焦點在坐標(biāo)軸上,直線與橢圓在第一象限內(nèi)的交點是,點軸上的射影恰好是橢圓的右焦點,橢圓另一個焦點是,且

(1)求橢圓的方程;

(2)設(shè)過點的直線交于點不在軸上),垂直于的直線與交于點,與軸交于點.若,且,求直線的方程.

查看答案和解析>>

科目:高中數(shù)學(xué) 來源: 題型:

【題目】在平面直角坐標(biāo)系中,經(jīng)過點且斜率為的直線與橢圓有兩個不同的交點

(1)求的取值范圍;

(2)設(shè)橢圓與軸正半軸、軸正半軸的交點分別為,是否存在常數(shù),使得向量共線?如果存在,求值;如果不存在,請說明理由.

查看答案和解析>>

科目:高中數(shù)學(xué) 來源: 題型:

【題目】在數(shù)列{an},{bn}中,a1=2,b1=4,且an,bnan1成等差數(shù)列,bnan1,bn1成等比數(shù)列{nN}.

a2a3,a4b2,b3,b4,由此猜測{an},{bn}的通項公式,并證明你的結(jié)論;

查看答案和解析>>

科目:高中數(shù)學(xué) 來源: 題型:

【題目】已知函數(shù).

1)討論的單調(diào)性;

2)若有兩個零點,求實數(shù)的取值范圍,并證明.

查看答案和解析>>

科目:高中數(shù)學(xué) 來源: 題型:

【題目】某中學(xué)舉行“新冠肺炎”防控知識閉卷考試比賽,總分獲得一等獎、二等獎、三等獎的代表隊人數(shù)情況如表,其中一等獎代表隊比三等獎代表隊多10人.該校政教處為使頒獎儀式有序進行,氣氛活躍,在頒獎過程中穿插抽獎活動.并用分層抽樣的方法從三個代表隊中共抽取16人在前排就坐,其中二等獎代表隊有5人(同隊內(nèi)男女生仍采用分層抽樣)

名次

性別

一等獎

代表隊

二等獎

代表隊

三等獎

代表隊

男生

?

30

女生

30

20

30

1)從前排就坐的一等獎代表隊中隨機抽取3人上臺領(lǐng)獎,用X表示女生上臺領(lǐng)獎的人數(shù),求X的分布列和數(shù)學(xué)期望EX).

2)抽獎活動中,代表隊員通過操作按鍵,使電腦自動產(chǎn)生[22]內(nèi)的兩個均勻隨機數(shù)x,y,隨后電腦自動運行如圖所示的程序框圖的相應(yīng)程序.若電腦顯示“中獎”,則代表隊員獲相應(yīng)獎品;若電腦顯示“謝謝”,則不中獎.求代表隊隊員獲得獎品的概率.

查看答案和解析>>

科目:高中數(shù)學(xué) 來源: 題型:

【題目】某保險公司對一個擁有20000人的企業(yè)推出一款意外險產(chǎn)品,每年每位職工只要交少量保費,發(fā)生意外后可一次性獲得若干賠償金,保險公司把企業(yè)的所有崗位共分為三類工種,從事這三類工種的人數(shù)分別為12000,6000,2000,由歷史數(shù)據(jù)統(tǒng)計出三類工種的賠付頻率如下表(并以此估計賠付概率):

已知三類工種職工每人每年保費分別為25元、25元、40元,出險后的賠償金額分別為100萬元、100萬元、50萬元,保險公司在開展此項業(yè)務(wù)過程中的固定支出為每年10萬元.

(1)求保險公司在該業(yè)務(wù)所或利潤的期望值;

(2)現(xiàn)有如下兩個方案供企業(yè)選擇:

方案1:企業(yè)不與保險公司合作,職工不交保險,出意外企業(yè)自行拿出與保險公司提供的等額賠償金賠償付給意外職工,企業(yè)開展這項工作的固定支出為每年12萬元;

方案2:企業(yè)與保險公司合作,企業(yè)負責(zé)職工保費的70%,職工個人負責(zé)保費的30%,出險后賠償金由保險公司賠付,企業(yè)無額外專項開支.

請根據(jù)企業(yè)成本差異給出選擇合適方案的建議.

查看答案和解析>>

同步練習(xí)冊答案