在直四棱柱ABCD-A1B1C1D1中,DB=BC,DB⊥AC,點M是棱BB1上一點.
(1)求證:B1D1∥平面A1BD;
(2)求證:MD⊥AC;
(3)試確定點M的位置,使得平面DMC1⊥平面CC1D1D.
(1)見解析. (2)見解析.(3)當點M為棱BB1的中點時,平面DMC1⊥平面CC1D1D.
解析試題分析:(1)由直四棱柱概念,得BB1//DD1,
得到四邊形BB1D1D是平行四邊形,從而B1D1∥BD,由直線與平面平行的判定定理即得證.
(2)注意到BB1⊥平面ABCD,AC?平面ABCD,推出BB1⊥AC.
又BD⊥AC,即得AC⊥平面BB1D1D.而MD?平面BB1D1D,故得證.
(3)分析預見當點M為棱BB1的中點時,符合題意.此時取DC的中點N,D1C1的中點N1,連接NN1交DC1于O,連接OM,證得BN⊥DC.又DC是平面ABCD與平面DCC1D1的交線,而平面ABCD⊥平面DCC1D1,推出BN⊥平面DCC1D1.又可證得,O是NN1的中點,由四邊形BMON是平行四邊形,得出OM⊥平面CC1D1D,得證.
試題解析:(1)由直四棱柱概念,得BB1//DD1,
∴四邊形BB1D1D是平行四邊形,∴B1D1∥BD.
而BD?平面A1BD,B1D1?平面A1BD,∴B1D1∥平面A1BD.
(2)∵BB1⊥平面ABCD,AC?平面ABCD,∴BB1⊥AC.
又∵BD⊥AC,且BD∩BB1=B,∴AC⊥平面BB1D1D.
而MD?平面BB1D1D,∴MD⊥AC.
(3)當點M為棱BB1的中點時,取DC的中點N,D1C1的中點N1,連接NN1交DC1于O,連接OM,如圖所示.
∵N是DC的中點,BD=BC,∴BN⊥DC.又∵DC是平面ABCD與平面DCC1D1的交線,而平面ABCD⊥平面DCC1D1,∴BN⊥平面DCC1D1.
又可證得,O是NN1的中點,∴BM∥ON且BM=ON,即四邊形BMON是平行四邊形,∴BN∥OM,∴OM⊥平面CC1D1D,因為OM?面DMC1,所以平面DMC1⊥平面CC1D1D.
考點:線面平行的判定定理,線面垂直的判定及性質(zhì),面面垂直的判定,四棱柱的幾何特征.
科目:高中數(shù)學 來源: 題型:解答題
如圖,已知、、為不在同一直線上的三點,且,.
(1)求證:平面//平面;
(2)若平面,且,,,求證:平面;
(3)在(2)的條件下,求二面角的余弦值.
查看答案和解析>>
科目:高中數(shù)學 來源: 題型:解答題
已知梯形ABCD中,AD∥BC,∠ABC =∠BAD =,AB=BC=2AD=4,E、F分別是AB、CD上的點,EF∥BC,AE=x,G是BC的中點。沿EF將梯形ABCD翻折,使平面AEFD⊥平面EBCF (如圖) .
(1) 當x=2時,求證:BD⊥EG ;
(2) 若以F、B、C、D為頂點的三棱錐的體積記為f(x),求f(x)的最大值;
(3) 當f(x)取得最大值時,求二面角D-BF-C的余弦值.
查看答案和解析>>
科目:高中數(shù)學 來源: 題型:解答題
如圖,在四棱錐P-ABCD中,PA⊥面ABCD,AB=BC=2,AD=CD=,PA=,∠ABC=120°,G為線段PC的中點.
(1)證明:PA//平面BGD;
(2)求直線DG與平面PAC所成的角的正切值.
查看答案和解析>>
科目:高中數(shù)學 來源: 題型:解答題
將邊長為的正方形和等腰直角三角形按圖拼為新的幾何圖形,中,,連結(jié),若,為中點
(Ⅰ)求與所成角的大小;
(Ⅱ)若為中點,證明:平面;
(Ⅲ)證明:平面平面
查看答案和解析>>
湖北省互聯(lián)網(wǎng)違法和不良信息舉報平臺 | 網(wǎng)上有害信息舉報專區(qū) | 電信詐騙舉報專區(qū) | 涉歷史虛無主義有害信息舉報專區(qū) | 涉企侵權(quán)舉報專區(qū)
違法和不良信息舉報電話:027-86699610 舉報郵箱:58377363@163.com