若loga2=m,loga3=n,其中a>0,且a≠1,則am-n=
 
考點(diǎn):對數(shù)的運(yùn)算性質(zhì)
專題:函數(shù)的性質(zhì)及應(yīng)用
分析:化對數(shù)式為指數(shù)式,然后利用有理指數(shù)冪的運(yùn)算性質(zhì)化簡求值.
解答: 解:∵loga2=m,loga3=n,
∴am=2,an=3,
則am-n=
am
an
=
2
3

故答案為:
2
3
點(diǎn)評:本題考查了對數(shù)的運(yùn)算性質(zhì),考查了有理指數(shù)冪的化簡求值,是基礎(chǔ)題.
練習(xí)冊系列答案
相關(guān)習(xí)題

科目:高中數(shù)學(xué) 來源: 題型:

△ABC的內(nèi)角A,B,C的對邊分別為a,b,c,且asinA+csinC+
2
asinC=bsinB,則∠B=
 

查看答案和解析>>

科目:高中數(shù)學(xué) 來源: 題型:

直線y=x與曲線xy=1的交點(diǎn)坐標(biāo)是(  )
A、(1,1)
B、(1,1)和(-1,-1)
C、(-1,-1)
D、(0,0)

查看答案和解析>>

科目:高中數(shù)學(xué) 來源: 題型:

已知復(fù)數(shù)z=(2-i)i,則z的模為
 

查看答案和解析>>

科目:高中數(shù)學(xué) 來源: 題型:

在自然界中,存在著大量的周期函數(shù),比如聲波,若兩個(gè)聲波隨時(shí)間的變化規(guī)律分別為:y1=3sin(100πt),y2=3cos(100πt),則這兩個(gè)聲波合成后即y=y1+y2的振幅為( 。
A、3
B、6
C、3
2
D、6
2

查看答案和解析>>

科目:高中數(shù)學(xué) 來源: 題型:

設(shè)全集U={0,1,2,3},集合M={0,1,2},N={0,2,3},則M∩∁UN等于( 。
A、{1}B、{2,3}
C、{0,1,2}D、φ

查看答案和解析>>

科目:高中數(shù)學(xué) 來源: 題型:

已知tan(π-a)=3,則
sin(
2
-a)+2sin(a-π)
2cos(π-a)-cos(a-
π
2
)
的值是
 

查看答案和解析>>

科目:高中數(shù)學(xué) 來源: 題型:

已知扇形的圓心角為60°,半徑為3,求扇形的弧長(用弧度制表示)
 

查看答案和解析>>

科目:高中數(shù)學(xué) 來源: 題型:

某休閑農(nóng)莊有一塊長方形魚塘ABCD,AB=50米,BC=25
3
米,為了便于游客休閑散步,該農(nóng)莊決定在魚塘內(nèi)建三條如圖所示的觀光走廊OE、EF和OF,考慮到整體規(guī)劃,要求O是AB的中點(diǎn),點(diǎn)E在邊BC上,點(diǎn)F在邊AD上,且∠EOF=90°.
(1)設(shè)∠BOE=α,試將△OEF的周長l表示成α的函數(shù)關(guān)系式,并求出此函數(shù)的定義域;
(2)經(jīng)核算,三條走廊每米建設(shè)費(fèi)用均為4000元,試問如何設(shè)計(jì)才能使建設(shè)總費(fèi)用最低并求出最低總費(fèi)用.

查看答案和解析>>

同步練習(xí)冊答案