設(shè)等比數(shù)列{an}的前n項(xiàng)和為Sn,已知
(1)求數(shù)列{an}的通項(xiàng)公式;
(2)在an之間插入n個1,構(gòu)成如下的新數(shù)列:a1,1,a2,1,1,a3,1,1,1,a4,…,求這個數(shù)列的前2012項(xiàng)的和;
(3)在an與an+1之間插入n個數(shù),使這n+2個數(shù)組成公差為dn的等差數(shù)列(如:在a1與a2之間插入1個數(shù)構(gòu)成第一個等差數(shù)列,其公差為d1;在a2與a3之間插入2個數(shù)構(gòu)成第二個等差數(shù)列,其公差為d2,…以此類推),設(shè)第n個等差數(shù)列的和是An.是否存在一個關(guān)于n的多項(xiàng)式g(n),使得An=g(n)dn對任意n∈N*恒成立?若存在,求出這個多項(xiàng)式;若不存在,請說明理由.
【答案】分析:(1)設(shè)an=a1qn-1,由an+1=2Sn+2,建立方程組,求出a1和q,能夠推導(dǎo)出an
(2)利用題設(shè)條件知:到an為止,新的數(shù)列共有1+2+3+…+n=項(xiàng),令=2012,知:到a62為止,新的數(shù)列共有1953項(xiàng),由此能求出該數(shù)列的前2012項(xiàng)的和.
(3)依題意,dn==,An=,要使An=g(n)dn,則4(n+2)×3n-1=g(n)×,由此能夠推導(dǎo)出存在g(n)=n2+3n+2滿足條件.
解答:解:(1)設(shè)an=a1qn-1,
由an+1=2Sn+2,知,
解得,
故an=2×3n-1…(6分)
(2)依題意,到an為止,新的數(shù)列共有1+2+3+…+n=項(xiàng),
=2012,
得n=≈62.9,
即到a62為止,新的數(shù)列共有1+2+3+4+…+62==1953項(xiàng),
故該數(shù)列的前2012項(xiàng)的和為:
a1+a2+…+a62+1+2+3+…+61+(2012-1953)==362+1949.
(3)依題意,dn==,
An=
=4(n+2)×3n-1,
要使An=g(n)dn,
則4(n+2)×3n-1=g(n)×,
∴g(n)=(n+2)×(n+1)=n2+3n+2,
即存在g(n)=n2+3n+2滿足條件.
點(diǎn)評:第(1)題考查數(shù)列的通項(xiàng)公式的求法,解題時要注意合理地進(jìn)行等價轉(zhuǎn)化;第(2)題考查數(shù)列的前n項(xiàng)和的計算和等比數(shù)列的綜合運(yùn)用,解題時要注意等比數(shù)列和等差數(shù)列前n項(xiàng)和公式的合理運(yùn)用;第(3)題考查多項(xiàng)式是否存在的探索,對數(shù)學(xué)思維的要求較高,解題時要認(rèn)真審題,仔細(xì)解答.
練習(xí)冊系列答案
相關(guān)習(xí)題

科目:高中數(shù)學(xué) 來源: 題型:

設(shè)等比數(shù)列{an}的前n項(xiàng)和為Sn,若8a2+a5=0,則下列式子中數(shù)值不能確定的是(  )
A、
a5
a3
B、
S5
S3
C、
an+1
an
D、
Sn+1
Sn

查看答案和解析>>

科目:高中數(shù)學(xué) 來源: 題型:

12、設(shè)等比數(shù)列{an}的前n項(xiàng)和為Sn,巳知S10=∫03(1+2x)dx,S20=18,則S30=
21

查看答案和解析>>

科目:高中數(shù)學(xué) 來源: 題型:

設(shè)等比數(shù)列{an}的前n項(xiàng)和為Sn,若S6:S3=3,則S9:S6=
 

查看答案和解析>>

科目:高中數(shù)學(xué) 來源: 題型:

設(shè)等比數(shù)列{an}的前n項(xiàng)和為Sn,若
S6
S3
=3,則
S9
S6
=( 。
A、
1
2
B、
7
3
C、
8
3
D、1

查看答案和解析>>

科目:高中數(shù)學(xué) 來源: 題型:

設(shè)等比數(shù)列{an}的前n 項(xiàng)和為Sn,若
S6
S3
=3,則
S9
S3
=
7
7

查看答案和解析>>

同步練習(xí)冊答案