【題目】旅行社為去廣西桂林的某旅游團包飛機去旅游,其中旅行社的包機費為10000元,旅游團中的每人的飛機票按以下方式與旅行社結算:若旅游團的人數(shù)在20或20以下,飛機票每人收費800元;若旅游團的人數(shù)多于20,則實行優(yōu)惠方案,每多1人,機票費每張減少10元,但旅游團的人數(shù)最多為75,則該旅行社可獲得利潤的最大值為( )

A. 12000元B. 15000元C. 12500元D. 20000元

【答案】B

【解析】

設旅游團的人數(shù)為,每張機票為元,該旅行社可獲得利潤為元,利用一次函數(shù)和二次函數(shù)的性質(zhì),分別求出當時和當時,的最大值即可.

設旅游團的人數(shù)為,每張機票為元,該旅行社可獲得利潤為元,

時,,顯然當時,有最大值,最大值為

時,,

,

顯然當時,有最大值,最大值為,故本題選B.

練習冊系列答案
相關習題

科目:高中數(shù)學 來源: 題型:

【題目】已知函數(shù).

(1)討論函數(shù)的單調(diào)性;

(2)若不等式時恒成立,求實數(shù)的取值范圍;

(3)當時,證明:

查看答案和解析>>

科目:高中數(shù)學 來源: 題型:

【題目】如圖,四棱錐中,底面為平行四邊形, 底面, 是棱的中點,

.

(1)求證: 平面

(2)如果是棱上一點,且直線與平面所成角的正弦值為,求的值.

查看答案和解析>>

科目:高中數(shù)學 來源: 題型:

【題目】某百貨公司1~6月份的銷售量與利潤的統(tǒng)計數(shù)據(jù)如下表:

月份

1

2

3

4

5

6

銷售量x(萬件)

10

11

13

12

8

6

利潤y(萬元)

22

25

29

26

16

12

附:

(1)根據(jù)2~5月份的統(tǒng)計數(shù)據(jù),求出關于的回歸直線方程

(2)若由回歸直線方程得到的估計數(shù)據(jù)與剩下的檢驗數(shù)據(jù)的誤差均不超過萬元,則認為得到的回歸直線方程是理想的,試問所得回歸直線方程是否理想?(參考公式:,

查看答案和解析>>

科目:高中數(shù)學 來源: 題型:

【題目】如圖,在四棱錐P﹣ABCD中,側(cè)面PAB⊥底面ABCD,且∠PAB=∠ABC=90°,AD∥BC,PA=AB=BC=2AD,E是PC的中點.
(Ⅰ)求證:DE⊥平面PBC;
(Ⅱ)求二面角A﹣PD﹣E的余弦值.

查看答案和解析>>

科目:高中數(shù)學 來源: 題型:

【題目】設拋物線C:x2=4y的焦點為F,斜率為k的直線l經(jīng)過點F,若拋物線C上存在四個點到直線l的距離為2,則k的取值范圍是(
A.(﹣∞,﹣ )∪( ,+∞)
B.(﹣ ,﹣1)∪(1,
C.(﹣ ,
D.(﹣∞,﹣1)∪(1,+∞)

查看答案和解析>>

科目:高中數(shù)學 來源: 題型:

【題目】已知函數(shù)有如下性質(zhì):如果常數(shù),那么該函數(shù)在上是減函數(shù),在上是增函數(shù).

(1)已知,,利用上述性質(zhì),求函數(shù)的單調(diào)區(qū)間和值域.

(2)對于(1)中的函數(shù)和函數(shù),若對于任意的,總存在,使得成立,求實數(shù)的值.

查看答案和解析>>

科目:高中數(shù)學 來源: 題型:

【題目】如圖,四棱錐P﹣ABCD中,PA⊥平面ABCD,四邊形ABCD為梯形,AD∥BC,BC=6,PA=AD=CD=2,E為BC上一點且BE= BC,PB⊥AE.

(1)求證:AB⊥PE;
(2)求二面角B﹣PC﹣D的余弦值.

查看答案和解析>>

科目:高中數(shù)學 來源: 題型:

【題目】已知函數(shù).

1)解不等式;

(2)若函數(shù)在區(qū)間上存在零點,求實數(shù)的取值范圍;

3)若函數(shù),其中為奇函數(shù), 為偶函數(shù),若不等式對任意恒成立,求實數(shù)的取值范圍.

查看答案和解析>>

同步練習冊答案