【題目】如圖,在邊長(zhǎng)為4的長(zhǎng)方形ABCD中,動(dòng)圓Q的半徑為1,圓心Q在線段BC(含端點(diǎn))上運(yùn)動(dòng),P是圓Q上及內(nèi)部的動(dòng)點(diǎn),設(shè)向量 =m +n (m,n為實(shí)數(shù)),則m+n的取值范圍是( )
A.
B.
C.
D.
【答案】A
【解析】解:如圖所示,邊長(zhǎng)為4的長(zhǎng)方形ABCD中,動(dòng)圓Q的半徑為1,圓心Q在線段BC(含端點(diǎn))上運(yùn)動(dòng),P是圓Q上及內(nèi)部的動(dòng)點(diǎn),向量 =m +n (m,n為實(shí)數(shù)); =( 4,0), =(0,4).可得 =m +n =( 4m,4n). 當(dāng)動(dòng)圓Q的圓心經(jīng)過(guò)點(diǎn)C時(shí),如圖:P( , ).
此時(shí)m+n取得最大值:4m+4n=8+ ,可得m+n=2+ .
當(dāng)動(dòng)圓Q的圓心為點(diǎn)B時(shí),AP與⊙B相切且點(diǎn)P在x軸的下方時(shí), ,
此時(shí),4m+4n=4﹣ sin( ),
m+n取得最小值為:1﹣ ;此時(shí)P( 4﹣ ,﹣ ).
∴則m+n的取值范圍為 .
故選:A.
年級(jí) | 高中課程 | 年級(jí) | 初中課程 |
高一 | 高一免費(fèi)課程推薦! | 初一 | 初一免費(fèi)課程推薦! |
高二 | 高二免費(fèi)課程推薦! | 初二 | 初二免費(fèi)課程推薦! |
高三 | 高三免費(fèi)課程推薦! | 初三 | 初三免費(fèi)課程推薦! |
科目:高中數(shù)學(xué) 來(lái)源: 題型:
【題目】已知函數(shù)f(x)=sinωx﹣ cosωx(ω>0),若方程f(x)=﹣1在(0,π)上有且只有四個(gè)實(shí)數(shù)根,則實(shí)數(shù)ω的取值范圍為( )
A.( , ]
B.( , ]
C.( , ]
D.( , ]
查看答案和解析>>
科目:高中數(shù)學(xué) 來(lái)源: 題型:
【題目】已知橢圓 的離心率為 ,四個(gè)頂點(diǎn)構(gòu)成的菱形的面積是4,圓M:(x+1)2+y2=r2(0<r<1).過(guò)橢圓C的上頂點(diǎn)A作圓M的兩條切線分別與橢圓C相交于B,D兩點(diǎn)(不同于點(diǎn)A),直線AB,AD的斜率分別為k1 , k2 .
(1)求橢圓C的方程;
(2)當(dāng)r變化時(shí),①求k1k2的值;②試問(wèn)直線BD是否過(guò)某個(gè)定點(diǎn)?若是,求出該定點(diǎn);若不是,請(qǐng)說(shuō)明理由.
查看答案和解析>>
科目:高中數(shù)學(xué) 來(lái)源: 題型:
【題目】如圖,的邊邊所在直線的方程為 滿足,點(diǎn)在邊所在直線上且滿足.
(I)求邊所在直線的方程;
(II)求的外接圓的方程;
(III)若點(diǎn)的坐標(biāo)為,其中為正整數(shù)。試討論在的外接圓上是否存在點(diǎn)使得成立?說(shuō)明理由.
查看答案和解析>>
科目:高中數(shù)學(xué) 來(lái)源: 題型:
【題目】在直角坐標(biāo)系xOy中,直線C1:x=﹣2,圓C2:(x﹣1)2+(y﹣2)2=1,以坐標(biāo)原點(diǎn)為極點(diǎn),x軸的正半軸為極軸建立極坐標(biāo)系.
(Ⅰ)求C1 , C2的極坐標(biāo)方程;
(Ⅱ)若直線C3的極坐標(biāo)方程為θ= (ρ∈R),設(shè)C2與C3的交點(diǎn)為M,N,求△C2MN的面積.
查看答案和解析>>
科目:高中數(shù)學(xué) 來(lái)源: 題型:
【題目】如圖,在△ABC中,∠B=30°,AC= ,D是邊AB上一點(diǎn).
(1)求△ABC面積的最大值;
(2)若CD=2,△ACD的面積為2,∠ACD為銳角,求BC的長(zhǎng).
查看答案和解析>>
科目:高中數(shù)學(xué) 來(lái)源: 題型:
【題目】據(jù)環(huán)保部門測(cè)定,某處的污染指數(shù)與附近污染源的強(qiáng)度成正比,與到污染源距離的平方成反比,比例常數(shù)為.現(xiàn)已知相距的兩家化工廠(污染源)的污染強(qiáng)度分別為,它們連線上任意一點(diǎn)處(異于兩點(diǎn))的污染指數(shù)等于兩化工廠對(duì)該處的污染指數(shù)之和.設(shè).
(1)試將表示為的函數(shù);
(2)若,且時(shí),取得最小值,試求的值.
查看答案和解析>>
科目:高中數(shù)學(xué) 來(lái)源: 題型:
【題目】已知橢圓C: =1(a>b>0)過(guò)點(diǎn)A(0,3),與雙曲線 =1有相同的焦點(diǎn)
(1)求橢圓C的方程;
(2)過(guò)A點(diǎn)作兩條相互垂直的直線,分別交橢圓C于P,Q兩點(diǎn),則PQ是否過(guò)定點(diǎn)?若是,求出定點(diǎn)的坐標(biāo),若不是,請(qǐng)說(shuō)明理由.
查看答案和解析>>
科目:高中數(shù)學(xué) 來(lái)源: 題型:
【題目】隨著國(guó)家二孩政策的全面放開,為了調(diào)查一線城市和非一線城市的二孩生育意愿,某機(jī)構(gòu)用簡(jiǎn)單隨機(jī)抽樣方法從不同地區(qū)調(diào)查了100位育齡婦女,結(jié)果如下表.
非一線城市 | 一線城市 | 總計(jì) | |
愿生 | 45 | 20 | 65 |
不愿生 | 13 | 22 | 35 |
總計(jì) | 58 | 42 | 100 |
附表:
由算得,,
參照附表,得到的正確結(jié)論是
A. 在犯錯(cuò)誤的概率不超過(guò)0.1%的前提下,認(rèn)為“生育意愿與城市級(jí)別有關(guān)”
B. 在犯錯(cuò)誤的概率不超過(guò)0.1%的前提下,認(rèn)為“生育意愿與城市級(jí)別無(wú)關(guān)”
C. 有99%以上的把握認(rèn)為“生育意愿與城市級(jí)別有關(guān)”
D. 有99%以上的把握認(rèn)為“生育意愿與城市級(jí)別無(wú)關(guān)”
查看答案和解析>>
百度致信 - 練習(xí)冊(cè)列表 - 試題列表
湖北省互聯(lián)網(wǎng)違法和不良信息舉報(bào)平臺(tái) | 網(wǎng)上有害信息舉報(bào)專區(qū) | 電信詐騙舉報(bào)專區(qū) | 涉歷史虛無(wú)主義有害信息舉報(bào)專區(qū) | 涉企侵權(quán)舉報(bào)專區(qū)
違法和不良信息舉報(bào)電話:027-86699610 舉報(bào)郵箱:58377363@163.com