【題目】(14分)在四棱錐P-ABCD中,∠ABC=∠ACD=90°,∠BAC=∠CAD=60°,PA⊥平面ABCD,E為PD的中點,PA=2AB=2.
(Ⅰ)求四棱錐P-ABCD的體積V;
(Ⅱ)若F為PC的中點,求證PC⊥平面AEF;
(Ⅲ)求證CE∥平面PAB.
【答案】(Ⅰ)V=.
(Ⅱ)略
(Ⅲ)略
【解析】解:(Ⅰ)在Rt△ABC中,AB=1,
∠BAC=60°,∴BC=,AC=2.
在Rt△ACD中,AC=2,∠CAD=60°,
∴CD=2,AD=4.
∴SABCD=
.……………… 3分
則V=. ……………… 5分
(Ⅱ)∵PA=CA,F為PC的中點,
∴AF⊥PC. ……………… 7分
∵PA⊥平面ABCD,∴PA⊥CD.
∵AC⊥CD,PA∩AC=A,
∴CD⊥平面PAC.∴CD⊥PC.
∵E為PD中點,F為PC中點,
∴EF∥CD.則EF⊥PC. ……… 9分
∵AF∩EF=F,∴PC⊥平面AEF.…… 10分
(Ⅲ)證法一:
取AD中點M,連EM,CM.則EM∥PA.
∵EM 平面PAB,PA平面PAB,
∴EM∥平面PAB. ……… 12分
在Rt△ACD中,∠CAD=60°,AC=AM=2,
∴∠ACM=60°.而∠BAC=60°,∴MC∥AB.
∵MC 平面PAB,AB平面PAB,
∴MC∥平面PAB. ……… 14分
∵EM∩MC=M,
∴平面EMC∥平面PAB.
∵EC平面EMC,
∴EC∥平面PAB. ……… 15分
證法二:
延長DC、AB,設它們交于點N,連PN.
∵∠NAC=∠DAC=60°,AC⊥CD,
∴C為ND的中點. ……12分
∵E為PD中點,∴EC∥PN.……14分
∵EC 平面PAB,PN 平面PAB,
∴EC∥平面PAB. ……… 15分
科目:高中數(shù)學 來源: 題型:
【題目】已知曲線, ,則下列說法正確的是( )
A. 把上各點橫坐標伸長到原來的2倍,縱坐標不變,再把得到的曲線向右平移個單位長度,得到曲線
B. 把上各點橫坐標伸長到原來的2倍,縱坐標不變,再把得到的曲線向右平移個單位長度,得到曲線
C. 把曲線向右平移個單位長度,再把得到的曲線上各點橫坐標縮短到原來的,縱坐標不變,得到曲線
D. 把曲線向右平移個單位長度,再把得到的曲線上各點橫坐標縮短到原來的,縱坐標不變,得到曲線
查看答案和解析>>
科目:高中數(shù)學 來源: 題型:
【題目】【選修4-4:坐標系與參數(shù)方程】
極坐標系的極點為直角坐標系的原點,極軸為軸的正半軸,兩神坐標系中的長度單位相同.已知曲線的極坐標方程為, .
(Ⅰ)求曲線的直角坐標方程;
(Ⅱ)在曲線上求一點,使它到直線: (為參數(shù))的距離最短,寫出點的直角坐標.
查看答案和解析>>
科目:高中數(shù)學 來源: 題型:
【題目】選修4-4:坐標系與參數(shù)方程
在直角坐標系中,直線的參數(shù)方程為(為參數(shù)),直線的參數(shù)方程為(為參數(shù)),設與的交點為,當變化時, 的軌跡為曲線.
(1)寫出的普遍方程及參數(shù)方程;
(2)以坐標原點為極點, 軸正半軸為極軸建立極坐標系,設曲線的極坐標方程為, 為曲線上的動點,求點到的距離的最小值.
查看答案和解析>>
科目:高中數(shù)學 來源: 題型:
【題目】已知橢圓的左右焦點分別是,橢圓C的上頂點到直線的距離為,過且垂直于x軸的直線與橢圓C相交于M,N兩點,
且|MN|=1。
(I)求橢圓的方程;
(II)過點的直線與橢圓C相交于P,Q兩點,點),且,求直線的方程。
查看答案和解析>>
科目:高中數(shù)學 來源: 題型:
【題目】如圖,ABCD是邊長為3的正方形,DE⊥平面ABCD,AF∥DE,DE=3AF,BE與平面ABCD所成角為60°.
(1)求二面角F-BE-D的余弦值;
(2)設點M是線段BD上一個動點,試確定點M的位置,使得AM∥平面BEF,并證明你的結(jié)論.
查看答案和解析>>
湖北省互聯(lián)網(wǎng)違法和不良信息舉報平臺 | 網(wǎng)上有害信息舉報專區(qū) | 電信詐騙舉報專區(qū) | 涉歷史虛無主義有害信息舉報專區(qū) | 涉企侵權(quán)舉報專區(qū)
違法和不良信息舉報電話:027-86699610 舉報郵箱:58377363@163.com