(本小題滿(mǎn)分13分)已知橢圓的中心在原點(diǎn),焦點(diǎn),在軸上,經(jīng)過(guò)點(diǎn),,且拋物線(xiàn)的焦點(diǎn)為.
(1) 求橢圓的方程;
(2) 垂直于的直線(xiàn)與橢圓交于,兩點(diǎn),當(dāng)以為直徑的圓與軸相切時(shí),求直線(xiàn)的方程和圓的方程.
(1)
(2),或,
解析試題分析:(1) 設(shè)橢圓的方程為,
則由橢圓經(jīng)過(guò)點(diǎn),,有,①
∵拋物線(xiàn)的焦點(diǎn)為,∴ , ②
又 ③,
由①、②、③得,
所以橢圓的方程為. ……5分
(2) 依題意,直線(xiàn)斜率為1,
由此設(shè)直線(xiàn)的方程為,代入橢圓方程,得.
由,得.
記, =,=,
圓的圓心為,即, ,
半徑,
當(dāng)圓與軸相切時(shí),,即,,
當(dāng)時(shí),直線(xiàn)方程為,此時(shí),,圓心為(2,1),半徑為2,圓的方程為;
同理,當(dāng)時(shí),直線(xiàn)方程為,
圓的方程為. ……13分
考點(diǎn):本小題主要考查橢圓與拋物線(xiàn)基本量之間的關(guān)系和橢圓標(biāo)準(zhǔn)方程的求解、直線(xiàn)與橢圓的位置關(guān)系、韋達(dá)定理、直線(xiàn)與圓的位置關(guān)系、直線(xiàn)與圓的方程的求解,考查了學(xué)生綜合運(yùn)算所學(xué)知識(shí)分析問(wèn)題、解決問(wèn)題的能力和數(shù)形結(jié)合數(shù)學(xué)思想的應(yīng)用以及運(yùn)算求解能力.
點(diǎn)評(píng):每年高考圓錐曲線(xiàn)問(wèn)題都出現(xiàn)在壓軸題的位置上,難度一般較大,要充分利用數(shù)形結(jié)合數(shù)學(xué)思想方法,盡可能的尋求簡(jiǎn)單方法,盡可能的減少運(yùn)算,另外思維一定要嚴(yán)謹(jǐn),運(yùn)算一定要準(zhǔn)確.
年級(jí) | 高中課程 | 年級(jí) | 初中課程 |
高一 | 高一免費(fèi)課程推薦! | 初一 | 初一免費(fèi)課程推薦! |
高二 | 高二免費(fèi)課程推薦! | 初二 | 初二免費(fèi)課程推薦! |
高三 | 高三免費(fèi)課程推薦! | 初三 | 初三免費(fèi)課程推薦! |
科目:高中數(shù)學(xué) 來(lái)源: 題型:解答題
(12分)如圖所示,橢圓C: 的離心率,左焦點(diǎn)為右焦點(diǎn)為,短軸兩個(gè)端點(diǎn)為.與軸不垂直的直線(xiàn)與橢圓C交于不同的兩點(diǎn)、,記直線(xiàn)、的斜率分別為、,且.
(1)求橢圓 的方程;
(2)求證直線(xiàn) 與軸相交于定點(diǎn),并求出定點(diǎn)坐標(biāo).
(3)當(dāng)弦 的中點(diǎn)落在內(nèi)(包括邊界)時(shí),求直線(xiàn)的斜率的取值。
查看答案和解析>>
科目:高中數(shù)學(xué) 來(lái)源: 題型:解答題
(10分)過(guò)直角坐標(biāo)平面中的拋物線(xiàn),直線(xiàn)過(guò)焦點(diǎn)且與拋物線(xiàn)相交于,兩點(diǎn).
⑴當(dāng)直線(xiàn)的傾斜角為時(shí),用表示的長(zhǎng)度;
⑵當(dāng)且三角形的面積為4時(shí),求直線(xiàn)的方程.
查看答案和解析>>
科目:高中數(shù)學(xué) 來(lái)源: 題型:解答題
(本小題滿(mǎn)分12分) 已知橢圓的離心率,A,B
分別為橢圓的長(zhǎng)軸和短軸的端點(diǎn),為AB的中點(diǎn),O為坐標(biāo)原點(diǎn),且.
(1)求橢圓的方程;
(2)過(guò)(-1,0)的直線(xiàn)交橢圓于P,Q兩點(diǎn),求△POQ面積最大時(shí)直線(xiàn)的方程.
查看答案和解析>>
科目:高中數(shù)學(xué) 來(lái)源: 題型:解答題
(本小題滿(mǎn)分12分)已知橢圓的對(duì)稱(chēng)軸為坐標(biāo)軸,焦點(diǎn)在軸上,離心率,分別為橢圓的上頂點(diǎn)和右頂點(diǎn),且.
(Ⅰ)求橢圓的方程;
(Ⅱ)已知直線(xiàn)與橢圓相交于兩點(diǎn),且(其中為坐標(biāo)原點(diǎn)),求的值.
查看答案和解析>>
科目:高中數(shù)學(xué) 來(lái)源: 題型:解答題
(本小題滿(mǎn)分16分)如圖,是橢圓的左、右頂點(diǎn),橢圓的離心率為,右準(zhǔn)線(xiàn)的方程為.
(1)求橢圓方程;
(2)設(shè)是橢圓上異于的一點(diǎn),直線(xiàn)交于點(diǎn),以為直徑的圓記為.
①若恰好是橢圓的上頂點(diǎn),求截直線(xiàn)所得的弦長(zhǎng);
②設(shè)與直線(xiàn)交于點(diǎn),試證明:直線(xiàn)與軸的交點(diǎn)為定點(diǎn),并求該定點(diǎn)的坐標(biāo).
查看答案和解析>>
科目:高中數(shù)學(xué) 來(lái)源: 題型:解答題
(本題10分)已知,動(dòng)點(diǎn)滿(mǎn)足,設(shè)動(dòng)點(diǎn)的軌跡是曲線(xiàn),直線(xiàn):與曲線(xiàn)交于兩點(diǎn).(1)求曲線(xiàn)的方程;
(2)若,求實(shí)數(shù)的值;
(3)過(guò)點(diǎn)作直線(xiàn)與垂直,且直線(xiàn)與曲線(xiàn)交于兩點(diǎn),求四邊形面積的最大值.
查看答案和解析>>
科目:高中數(shù)學(xué) 來(lái)源: 題型:解答題
(本小題滿(mǎn)分14分)
如圖,設(shè)是圓上的動(dòng)點(diǎn),點(diǎn)D是在軸上的投影,M為D上一點(diǎn),且
(Ⅰ)當(dāng)的在圓上運(yùn)動(dòng)時(shí),求點(diǎn)M的軌跡C的方程;
(Ⅱ)求過(guò)點(diǎn)(3,0)且斜率為的直線(xiàn)被C所截線(xiàn)段的長(zhǎng)度。
查看答案和解析>>
科目:高中數(shù)學(xué) 來(lái)源: 題型:解答題
為何值時(shí),直線(xiàn)和曲線(xiàn)有兩個(gè)公共點(diǎn)?有一個(gè)公共點(diǎn)?
沒(méi)有公共點(diǎn)?
查看答案和解析>>
百度致信 - 練習(xí)冊(cè)列表 - 試題列表
湖北省互聯(lián)網(wǎng)違法和不良信息舉報(bào)平臺(tái) | 網(wǎng)上有害信息舉報(bào)專(zhuān)區(qū) | 電信詐騙舉報(bào)專(zhuān)區(qū) | 涉歷史虛無(wú)主義有害信息舉報(bào)專(zhuān)區(qū) | 涉企侵權(quán)舉報(bào)專(zhuān)區(qū)
違法和不良信息舉報(bào)電話(huà):027-86699610 舉報(bào)郵箱:58377363@163.com