【題目】某醫(yī)藥公司研發(fā)一種新的保健產(chǎn)品,從一批產(chǎn)品中抽取200盒作為樣本,測量產(chǎn)品的一項(xiàng)質(zhì)量指標(biāo)值,該指標(biāo)值越高越好.由測量結(jié)果得到如下頻率分布直方圖:
(Ⅰ)求,并試估計(jì)這200盒產(chǎn)品的該項(xiàng)指標(biāo)的平均值;
(Ⅱ)① 用樣本估計(jì)總體,由頻率分布直方圖認(rèn)為產(chǎn)品的質(zhì)量指標(biāo)值服從正態(tài)分布,計(jì)算該批產(chǎn)品指標(biāo)值落在上的概率;參考數(shù)據(jù):附:若,則,.
②國家有關(guān)部門規(guī)定每盒產(chǎn)品該項(xiàng)指標(biāo)不低150均為合格,且按指標(biāo)值的從低到高依次分為:合格、優(yōu)良、優(yōu)秀三個(gè)等級,其中為優(yōu)良,不高于180為合格,不低于220為優(yōu)秀,在①的條件下,設(shè)公司生產(chǎn)該產(chǎn)品1萬盒的成本為15萬元,市場上每盒該產(chǎn)品的等級售價(jià)(單位:元)如圖表,求該公司每萬盒的平均利潤.
等級 | 合格 | 優(yōu)良 | 優(yōu)秀 |
價(jià)格 | 10 | 20 | 30 |
【答案】(Ⅰ)a=0.033; 200(Ⅱ)①0.9544②5萬元
【解析】
(Ⅰ)由所有頻率之和為1列方程求解即可。
(Ⅱ)由,,計(jì)算即可求得,問題得解,計(jì)算每盒的平均售價(jià)為為元,從而求得每萬盒的平均利潤。
(Ⅰ)由解得.
設(shè)平均值為,則,即產(chǎn)品的該項(xiàng)指標(biāo)的平均值為200.
(Ⅱ)①由題意可得,,則
,則該批產(chǎn)品指標(biāo)值落在上的概率為0.9544.
②設(shè)每盒產(chǎn)品價(jià)格為元,由①可得的分布列為:
10 | 20 | 30 | |
0.0228 | 0.9544 | 0.0228 |
則每盒的平均售價(jià)為,
故每萬盒的平均利潤為(萬元)
年級 | 高中課程 | 年級 | 初中課程 |
高一 | 高一免費(fèi)課程推薦! | 初一 | 初一免費(fèi)課程推薦! |
高二 | 高二免費(fèi)課程推薦! | 初二 | 初二免費(fèi)課程推薦! |
高三 | 高三免費(fèi)課程推薦! | 初三 | 初三免費(fèi)課程推薦! |
科目:高中數(shù)學(xué) 來源: 題型:
【題目】已知函數(shù),R.
(1)試討論函數(shù)的極值點(diǎn)的個(gè)數(shù);
(2)若N*,且恒成立,求的最大值.
參考數(shù)據(jù):
查看答案和解析>>
科目:高中數(shù)學(xué) 來源: 題型:
【題目】已知函數(shù)是定義在R上的奇函數(shù),當(dāng)時(shí),,則下列命題正確的是( )
A.當(dāng)時(shí),
B.函數(shù)有3個(gè)零點(diǎn)
C.的解集為
D.,都有
查看答案和解析>>
科目:高中數(shù)學(xué) 來源: 題型:
【題目】已知函數(shù),其中.
(Ⅰ)討論的單調(diào)性;
(Ⅱ)當(dāng)時(shí),證明:;
(Ⅲ)求證:對任意正整數(shù),都有 (其中為自然對數(shù)的底數(shù)).
查看答案和解析>>
科目:高中數(shù)學(xué) 來源: 題型:
【題目】如圖是放置在桌面的某三棱柱的三視圖,其中網(wǎng)格小正方形邊長為1.若三棱柱表面上的、兩點(diǎn)在三視圖中的對應(yīng)點(diǎn)為、,現(xiàn)一只螞蟻要沿該三棱柱的表面(不包括下底面)從爬到,則所有路徑里最短路徑的長度為( )
A. B. C. D.
查看答案和解析>>
科目:高中數(shù)學(xué) 來源: 題型:
【題目】我國南宋數(shù)學(xué)家楊輝1261年所著的《詳解九章算法》一書里出現(xiàn)了如圖所示的表,即楊輝三角,這是數(shù)學(xué)史上的一個(gè)偉大成就.在“楊輝三角”中,第行的所有數(shù)字之和為,若去除所有為1的項(xiàng),依次構(gòu)成數(shù)列,則此數(shù)列的前55項(xiàng)和為( )
A. 4072B. 2026C. 4096D. 2048
查看答案和解析>>
湖北省互聯(lián)網(wǎng)違法和不良信息舉報(bào)平臺(tái) | 網(wǎng)上有害信息舉報(bào)專區(qū) | 電信詐騙舉報(bào)專區(qū) | 涉歷史虛無主義有害信息舉報(bào)專區(qū) | 涉企侵權(quán)舉報(bào)專區(qū)
違法和不良信息舉報(bào)電話:027-86699610 舉報(bào)郵箱:58377363@163.com