【題目】已知函數(shù).

(Ⅰ)求函數(shù)的圖象在點處的切線方程;

(Ⅱ)若,且對任意恒成立,求的最大值;

(Ⅲ)當(dāng)時,證明:.

【答案】(Ⅰ);(II3;(Ⅲ)證明見解析.

【解析】

(Ⅰ)求出的值,可得切線斜率,利用點斜式可得曲線在點處的切線方程;(Ⅱ)對任意恒成立,等價于對任意恒成立,,利用導(dǎo)數(shù)求得,從而可求整數(shù)的最大值;(Ⅲ)由(Ⅱ)知,上的增函數(shù), 當(dāng)時,,利用對數(shù)的運算結(jié)合,化簡即可得結(jié)論.

,

函數(shù)的圖象在點處的切線方程;

)由(Ⅰ)知,,對任意恒成立,

對任意恒成立.

,則,

,則,

所以函數(shù)上單調(diào)遞增.

,

方程上存在唯一實根,且滿足

當(dāng)時,,即,

當(dāng)時,,即

所以函數(shù)上單調(diào)遞減,在上單調(diào)遞增.

,

故整數(shù)的最大值是3

(Ⅲ)由()知,上的增函數(shù),

當(dāng)時,

整理,得

練習(xí)冊系列答案
相關(guān)習(xí)題

科目:高中數(shù)學(xué) 來源: 題型:

【題目】某單位有4位同事各有一輛私家車,車牌尾數(shù)分別是0,1,2,5,為遵守所在城市元月15日至184天的限行規(guī)定(奇數(shù)日車牌尾數(shù)為奇數(shù)的車通行,偶數(shù)日車牌尾數(shù)為偶數(shù)的車通行),四人商議拼車出行,每天任選一輛符合規(guī)定的車,但甲的車(車牌尾數(shù)為2)最多只能用一天,則不同的用車方案種數(shù)是(

A.4B.12C.16D.24

查看答案和解析>>

科目:高中數(shù)學(xué) 來源: 題型:

【題目】已知橢圓:過點和點.

Ⅰ)求橢圓的方程;

Ⅱ)設(shè)直線與橢圓相交于不同的兩點, ,是否存在實數(shù),使得?若存在,求出實數(shù);若不存在,請說明理由.

查看答案和解析>>

科目:高中數(shù)學(xué) 來源: 題型:

【題目】已知函數(shù)).

(1)討論函數(shù)的單調(diào)性;

(2)若,討論函數(shù)在區(qū)間上的最值.

查看答案和解析>>

科目:高中數(shù)學(xué) 來源: 題型:

【題目】如圖所示,在長方體ABCDA1B1C1D1,若AB=BC,EF分別是AB1,BC1的中點,則下列結(jié)論中不成立的是(

A.EFBB1垂直B.EF⊥平面BDD1B1

C.EFC1D所成的角為45°D.EF∥平面A1B1C1D1

查看答案和解析>>

科目:高中數(shù)學(xué) 來源: 題型:

【題目】現(xiàn)代社會,“鼠標(biāo)手”已成為常見病,一次實驗中,10名實驗對象進行160分鐘的連續(xù)鼠標(biāo)點擊游戲,每位實驗對象完成的游戲關(guān)卡一樣,鼠標(biāo)點擊頻率平均為180次/分鐘,實驗研究人員測試了實驗對象使用鼠標(biāo)前后的握力變化,前臂表面肌電頻率()等指標(biāo).

(I)10 名實驗對象實驗前、后握力(單位:)測試結(jié)果如下:

實驗前:346,357,358,360,362,362,364,372,373,376

實驗后:313,321,322,324,330,332,334,343,350,361

完成莖葉圖,并計算實驗后握力平均值比實驗前握力的平均值下降了多少?

(Ⅱ)實驗過程中測得時間(分)與10名實驗對象前臂表面肌電頻率()的中的位數(shù))的九組對應(yīng)數(shù)據(jù).建立關(guān)于時間的線性回歸方程;

(Ⅲ)若肌肉肌電水平顯著下降,提示肌肉明顯進入疲勞狀態(tài),根據(jù)(Ⅱ)中9組數(shù)據(jù)分析,使用鼠標(biāo)多少分鐘就該進行休息了?

參考數(shù)據(jù):

參考公式:回歸方程中斜率和截距的最小二乘估計公式分別為:

查看答案和解析>>

科目:高中數(shù)學(xué) 來源: 題型:

【題目】如圖所示,近日我漁船編隊在島周圍海域作業(yè),在島的南偏西20°方向有一個海面觀測站,某時刻觀測站發(fā)現(xiàn)有不明船只向我漁船編隊靠近,現(xiàn)測得與相距31海里的處有一艘海警船巡航,上級指示海警船沿北偏西40°方向,以40海里/小時的速度向島直線航行以保護我漁船編隊,30分鐘后到達處,此時觀測站測得間的距離為21海里.

(Ⅰ)求的值;

(Ⅱ)試問海警船再向前航行多少分鐘方可到島?

查看答案和解析>>

科目:高中數(shù)學(xué) 來源: 題型:

【題目】已知函數(shù).

(1)若曲線在點處的切線方程是,求函數(shù)上的值域;

(2)當(dāng)時,記函數(shù),若函數(shù)有三個零點,求實數(shù)的取值范圍.

查看答案和解析>>

科目:高中數(shù)學(xué) 來源: 題型:

【題目】選修4-4:坐標(biāo)系與參數(shù)方程

在平面直角坐標(biāo)系中,直線的參數(shù)方程為為參數(shù)),在以坐標(biāo)原點為極點,軸的正半軸為極軸的極坐標(biāo)系中,曲線的極坐標(biāo)方程為).

(I)求直線的極坐標(biāo)方程及曲線的直角坐標(biāo)方程;

(Ⅱ)已知是直線上的一點,是曲線上的一點, ,若的最大值為2,求的值.

查看答案和解析>>

同步練習(xí)冊答案