【題目】2012年,商品價(jià)格一度成為社會(huì)熱點(diǎn)話題,某種新產(chǎn)品投放市場(chǎng)的100天中,前40天價(jià)格呈直線上升,由于政府及時(shí)采取有效措施,從而使后60天的價(jià)格呈直線下降,現(xiàn)統(tǒng)計(jì)出其中4天的價(jià)格如下表

時(shí)間

第4天

第32天

第60天

第90天

價(jià)格(元)

23

30

22

7


(1)寫出價(jià)格f(x)關(guān)于時(shí)間x的函數(shù)關(guān)系式(x表示投放市場(chǎng)的第x天);
(2)銷售量g(x)與時(shí)間x的函數(shù)關(guān)系: (1≤x≤100,且x∈N),則該產(chǎn)品投放市場(chǎng)第幾天銷售額最高?最高為多少元?

【答案】
(1)解:由題意知,當(dāng)1≤x<40時(shí),一次函數(shù)y=ax+b過點(diǎn)A(4,23),B(32,30),代入函數(shù)求得a= ,b=22;

當(dāng)40≤x≤100時(shí),一次函數(shù)y=kx+m過點(diǎn)C(60,22),D(90,7),代入函數(shù)求得k=﹣ ,m=52;

∴函數(shù)解析式為:y=f(x)=


(2)解:設(shè)日銷售額為S千元,當(dāng)1≤x<40時(shí),S(x)=( x+22)(﹣ x+ )=﹣ (x﹣ 2+ ;

∴當(dāng)x=10或11時(shí),函數(shù)有最大值S(x)max= =808.5(千元);

當(dāng)40≤x≤100時(shí),S(x)=(﹣ x+52)(﹣ x+ )= (x2﹣213x+11336);

∴當(dāng)x=40時(shí),s(x)max=736(千元).

綜上所知,日銷售額最高是在第10天或第11天,最高值為808.5千元


【解析】(1)價(jià)格直線上升,直線下降,說明價(jià)格函數(shù)f(x)是一次函數(shù),由表中對(duì)應(yīng)關(guān)系用待定系數(shù)法易求f(x)的表達(dá)式;(2)由銷售額=銷售量×?xí)r間,得日銷售額函數(shù)S(x)的解析式,從而求出S(x)的最大值.
【考點(diǎn)精析】本題主要考查了函數(shù)的值域的相關(guān)知識(shí)點(diǎn),需要掌握求函數(shù)值域的方法和求函數(shù)最值的常用方法基本上是相同的.事實(shí)上,如果在函數(shù)的值域中存在一個(gè)最。ù螅⿺(shù),這個(gè)數(shù)就是函數(shù)的最。ù螅┲担虼饲蠛瘮(shù)的最值與值域,其實(shí)質(zhì)是相同的才能正確解答此題.

練習(xí)冊(cè)系列答案
相關(guān)習(xí)題

科目:高中數(shù)學(xué) 來源: 題型:

【題目】如圖,已知離心率為 的橢圓 過點(diǎn)M(2,1),O為坐標(biāo)原點(diǎn),平行于OM的直線i交橢圓C于不同的兩點(diǎn)A、B.
(1)求橢圓C的方程;
(2)記直線MB、MA與x軸的交點(diǎn)分別為P、Q,若MP斜率為k1 , MQ斜率為k2 , 求k1+k2

查看答案和解析>>

科目:高中數(shù)學(xué) 來源: 題型:

【題目】下面四個(gè)函數(shù):(1)y=1﹣x;(2)y=2x﹣1;(3)y=x2﹣1;(4)y= ,其中定義域與值域相同的函數(shù)有(
A.1個(gè)
B.2個(gè)
C.3個(gè)
D.4個(gè)

查看答案和解析>>

科目:高中數(shù)學(xué) 來源: 題型:

【題目】已知圓C與x軸相切,圓心C在射線3x﹣y=0(x>0)上,直線x﹣y=0被圓C截得的弦長(zhǎng)為2
(1)求圓C標(biāo)準(zhǔn)方程;
(2)若點(diǎn)Q在直線l1:x+y+1=0上,經(jīng)過點(diǎn)Q直線l2與圓C相切于p點(diǎn),求|QP|的最小值.

查看答案和解析>>

科目:高中數(shù)學(xué) 來源: 題型:

【題目】如圖,長(zhǎng)方體ABCD﹣A1B1C1D1中,AA1=AB=2,AD=1點(diǎn)E,F(xiàn),G分別是DD1 , AB,CC1的中點(diǎn),則異面直線A1E與GF所成的角是(
A.90°
B.60°
C.45°
D.30°

查看答案和解析>>

科目:高中數(shù)學(xué) 來源: 題型:

【題目】已知f(x)=logax,g(x)=loga(2x+t﹣2)2 , (a>0,a≠1,t∈R).
(1)當(dāng)t=4,x∈[1,2]時(shí)F(x)=g(x)﹣f(x)有最小值為2,求a的值;
(2)當(dāng)0<a<1,x∈[1,2]時(shí),有f(x)≥g(x)恒成立,求實(shí)數(shù)t的取值范圍.
(備注:函數(shù)y=x+ 在區(qū)間(0,1)上單調(diào)遞減,在區(qū)間(1,+∞)上單調(diào)遞增).

查看答案和解析>>

科目:高中數(shù)學(xué) 來源: 題型:

【題目】在定義域內(nèi)既是奇函數(shù)又是減函數(shù)的是(
A.y=
B.y=﹣x+
C.y=﹣x|x|
D.

查看答案和解析>>

科目:高中數(shù)學(xué) 來源: 題型:

【題目】已知直線x+ay﹣1=0是圓C:x2+y2﹣4x﹣2y+1=0的對(duì)稱軸,過點(diǎn)A(﹣4,a)作圓C的一條切線,切點(diǎn)為B,則|AB|=(
A.2
B.6
C.4
D.2

查看答案和解析>>

科目:高中數(shù)學(xué) 來源: 題型:

【題目】某三棱錐的三視圖如圖所示,則該三棱錐的表面積是(
A.2+
B.4+
C.2+2
D.5

查看答案和解析>>

同步練習(xí)冊(cè)答案