【題目】已知各項(xiàng)不為零的數(shù)列的前項(xiàng)和為,且, , .
(1)若成等比數(shù)列,求實(shí)數(shù)的值;
(2)若成等差數(shù)列,
①求數(shù)列的通項(xiàng)公式;
②在與間插入個(gè)正數(shù),共同組成公比為的等比數(shù)列,若不等式對(duì)任意的恒成立,求實(shí)數(shù)的最大值.
【答案】(1)(2)(3)
【解析】試題分析:(1)依據(jù)題設(shè)條件建立方程,通過解方程組進(jìn)行分析求解;(2)先依據(jù)題設(shè)條件運(yùn)用等差數(shù)列的定義建立方程求出參數(shù),再借助數(shù)列的前項(xiàng)和與通項(xiàng)之間的關(guān)系求出數(shù)列的通項(xiàng)公式;(3)依據(jù)題設(shè)條件運(yùn)用兩邊取對(duì)數(shù)的方法將問題進(jìn)行等價(jià)轉(zhuǎn)化,然后將參數(shù)進(jìn)行分離,構(gòu)造函數(shù)運(yùn)用函數(shù)思想及導(dǎo)數(shù)知識(shí)分析求解:
解:(1)當(dāng)時(shí), , ,當(dāng)時(shí), , ,
由得,即,解得: 。
(2)由得,故, ,所以,
當(dāng)時(shí), ,
因?yàn)?/span>,所以
故數(shù)列的所有奇數(shù)項(xiàng)組成以
其通項(xiàng)公式,
同理,數(shù)列的所有偶數(shù)項(xiàng)組成以為首項(xiàng)為公差的等差數(shù)列,
其通項(xiàng)公式是
所以數(shù)列的通項(xiàng)公式是
(3),在與間插入個(gè)正數(shù),組成公比為的等比數(shù)列,故有,
即,
所以,即,兩邊取對(duì)數(shù)得,
分離參數(shù)得恒成立
令, ,則, ,
令, ,則,
下證, ,
令, 則,所以,
即,用替代可得, ,
所以,所以在上遞減,
所以
年級(jí) | 高中課程 | 年級(jí) | 初中課程 |
高一 | 高一免費(fèi)課程推薦! | 初一 | 初一免費(fèi)課程推薦! |
高二 | 高二免費(fèi)課程推薦! | 初二 | 初二免費(fèi)課程推薦! |
高三 | 高三免費(fèi)課程推薦! | 初三 | 初三免費(fèi)課程推薦! |
科目:高中數(shù)學(xué) 來源: 題型:
【題目】已知Sn為數(shù)列{an}的前n項(xiàng)和,且an>0,an2+an=2Sn .
(1)求數(shù)列{an}的通項(xiàng)公式;
(2)令bn= ,記Tn=b12b32…b2n﹣12 , 求證:Tn≥ .
查看答案和解析>>
科目:高中數(shù)學(xué) 來源: 題型:
【題目】如圖,D是直角△ABC斜邊BC上一點(diǎn),AC= DC.
(Ⅰ)若∠DAC=30°,求角B的大;
(Ⅱ)若BD=2DC,且AD= ,求DC的長(zhǎng).
查看答案和解析>>
科目:高中數(shù)學(xué) 來源: 題型:
【題目】如圖所示,函數(shù)f(x)=sin(ωx+φ)(ω>0,|φ|< )離y軸最近的零點(diǎn)與最大值均在拋物線y=﹣ x2+ x+1上,則f(x)=( )
A.
B.
C.
D.
查看答案和解析>>
科目:高中數(shù)學(xué) 來源: 題型:
【題目】本市某玩具生產(chǎn)公司根據(jù)市場(chǎng)調(diào)查分析,決定調(diào)整產(chǎn)品生產(chǎn)方案,準(zhǔn)備每天生產(chǎn), , 三種玩具共100個(gè),且種玩具至少生產(chǎn)20個(gè),每天生產(chǎn)時(shí)間不超過10小時(shí),已知生產(chǎn)這些玩具每個(gè)所需工時(shí)(分鐘)和所獲利潤(rùn)如表:
玩具名稱 | |||
工時(shí)(分鐘) | 5 | 7 | 4 |
利潤(rùn)(元) | 5 | 6 | 3 |
(Ⅰ)用每天生產(chǎn)種玩具個(gè)數(shù)與種玩具表示每天的利潤(rùn)(元);
(Ⅱ)怎樣分配生產(chǎn)任務(wù)才能使每天的利潤(rùn)最大,最大利潤(rùn)是多少?
查看答案和解析>>
科目:高中數(shù)學(xué) 來源: 題型:
【題目】已知橢圓C1: 的離心率為 ,焦距為 ,拋物線C2:x2=2py(p>0)的焦點(diǎn)F是橢圓C1的頂點(diǎn). (Ⅰ)求C1與C2的標(biāo)準(zhǔn)方程;
(Ⅱ)C1上不同于F的兩點(diǎn)P,Q滿足 ,且直線PQ與C2相切,求△FPQ的面積.
查看答案和解析>>
科目:高中數(shù)學(xué) 來源: 題型:
【題目】?jī)蓚(gè)非零向量 、 不共線.
(1)若 = + , =2 +8 , =3( ﹣ ),求證:A、B、D三點(diǎn)共線;
(2)求實(shí)數(shù)k使k + 與2 +k 共線.
查看答案和解析>>
科目:高中數(shù)學(xué) 來源: 題型:
【題目】《孫子算經(jīng)》是中國古代重要的數(shù)學(xué)著作,約成書于四、五世紀(jì),也就是大約一千五百年前,傳本的《孫子算經(jīng)》共三卷,卷中有一問題:“今有方物一束,外周一匝有三十二枚,問積幾何?”該著作中提出了一種解決問題的方法:“重置二位,左位減八,余加右位,至盡虛加一,即得.”通過對(duì)該題的研究發(fā)現(xiàn),若一束方物外周一匝的枚數(shù)是8的整數(shù)倍時(shí),均可采用此方法求解,如圖,是解決這類問題的程序框圖,若輸入,則輸出的結(jié)果為( )
A. 120 B. 121 C. 112 D. 113
查看答案和解析>>
科目:高中數(shù)學(xué) 來源: 題型:
【題目】根據(jù)題意解答
(1)求定積分 |x2﹣2|dx的值;
(2)若復(fù)數(shù)z1=a+2i(a∈R),z2=3﹣4i,且 為純虛數(shù),求|z1|
查看答案和解析>>
百度致信 - 練習(xí)冊(cè)列表 - 試題列表
湖北省互聯(lián)網(wǎng)違法和不良信息舉報(bào)平臺(tái) | 網(wǎng)上有害信息舉報(bào)專區(qū) | 電信詐騙舉報(bào)專區(qū) | 涉歷史虛無主義有害信息舉報(bào)專區(qū) | 涉企侵權(quán)舉報(bào)專區(qū)
違法和不良信息舉報(bào)電話:027-86699610 舉報(bào)郵箱:58377363@163.com