(08年南昌市一模理)(12分)已知函數(shù)f (x) =lnx,g(x) =,(a為常數(shù)),若直線ly =f(x), y =g(x)的圖象都相切,且ly = f(x)的圖象相切的切點(diǎn)的橫坐標(biāo)為1.

(1)求直線l的方程及a的值;

(2) 當(dāng) 2 ≤m <時(shí),求h(x)= f(x)―f(x)[2g(x)- m +1]在[,2]上的最大值.

解析:(1),,。

又切點(diǎn)為的方程為!2分

相切,由

…………………4分

(2) h(x)= f(x)―f(x)[2g(x)- m +1]= lnx + , …………………5分

當(dāng)2 ≤m <時(shí),由,

顯然,又

當(dāng)時(shí),,h(x)單調(diào)遞增;(注意畫(huà)草圖,利用數(shù)形結(jié)合)

當(dāng)時(shí),,h(x)單調(diào)遞減 ,

∴h(x)=h(x)= -.

當(dāng)時(shí), h(x)= -.………6分

練習(xí)冊(cè)系列答案
相關(guān)習(xí)題

科目:高中數(shù)學(xué) 來(lái)源: 題型:

(08年南昌市一模理)( 14分) 已知數(shù)列滿足

(1)  求數(shù)列的通項(xiàng)公式;

(2)  設(shè)b= (n∈N,n≥2), b,

①求證:b+b+……+b< 3 ;

②設(shè)點(diǎn)M(n,b)((n∈N,n>2)在這些點(diǎn)中是否存在兩個(gè)不同的點(diǎn)同時(shí)在函數(shù)

y =(k>0)的圖象上,如果存在,求出點(diǎn)的坐標(biāo),若不存在,請(qǐng)說(shuō)明理由.

查看答案和解析>>

科目:高中數(shù)學(xué) 來(lái)源: 題型:

(08年南昌市一模理)(12分)已知F1、F2是橢圓的兩個(gè)焦點(diǎn),O為坐標(biāo)原點(diǎn),點(diǎn)P)在橢圓上,線段PF2y軸的交點(diǎn)M滿足;⊙O是以F1F2為直徑的圓,一直線l: y=kx+m與⊙O相切,并與橢圓交于不同的兩點(diǎn)A、B.

 (1)求橢圓的標(biāo)準(zhǔn)方程;

 (2)當(dāng),且滿足時(shí),求△AOB面積S的取值范圍.

查看答案和解析>>

科目:高中數(shù)學(xué) 來(lái)源: 題型:

(08年南昌市一模理)(12分)如圖,直三棱柱A1B1C1―ABC中,C1C=CB=CA=2,AC⊥CB. D、E分別為棱C1C、B1C1的中點(diǎn).

(1)求與平面A1C1CA所成角的大小;

(2)求二面角B―A1D―A的大;

(3)在線段AC上是否存在一點(diǎn)F,使得EF⊥平面A1BD?若存在,確定其位置并證明結(jié)論;若不存在,說(shuō)明理由.

 

查看答案和解析>>

科目:高中數(shù)學(xué) 來(lái)源: 題型:

(08年南昌市一模理) 正三棱錐S―ABC中,M是SC的中點(diǎn),=0,若側(cè)棱,則此正三棱錐S―ABC外接球的表面積是

A.36π      B.64π         C.144π        D.256π

查看答案和解析>>

同步練習(xí)冊(cè)答案