【題目】為了解高中生上學使用手機情況,調(diào)查者進行了如下的隨機調(diào)查:調(diào)查者向被調(diào)查者提出兩個問題:(1)你的學號是奇數(shù)嗎?(2)你上學時是否經(jīng)常帶手機?要求被調(diào)查者背對著調(diào)查人員拋擲一枚硬幣,如果出現(xiàn)正面,就回答第一問題,否則就回答第二個問題.被調(diào)查者不必告訴調(diào)查人員自己回答的是哪一個問題,只需回答“是”或“不是”,因為只有被調(diào)查者本人知道回答了哪一個問題,所以都如實地做了回答.結果被調(diào)查的800人(學號從1至800)中有260人回答了“是”.由此可以估計這800人中經(jīng)常帶手機上學的人數(shù)是_________.
科目:高中數(shù)學 來源: 題型:
【題目】已知函數(shù).(Ⅰ)求函數(shù)的最小正周期及單調(diào)遞增區(qū)間;(Ⅱ)將的圖像向右平移個單位得到函數(shù)的圖像,若,求函數(shù)的值域.
查看答案和解析>>
科目:高中數(shù)學 來源: 題型:
【題目】選修4-4:坐標系與參數(shù)方程
在直角坐標系中, 以坐標原點為極點, 軸的非負半軸為極軸建立極坐標系, 已知點的極坐標為,曲線的參數(shù)方程為為參數(shù)).
(1)直線過且與曲線相切, 求直線的極坐標方程;
(2)點 與點關于軸對稱, 求曲線上的點到點的距離的取值范圍.
查看答案和解析>>
科目:高中數(shù)學 來源: 題型:
【題目】(A)已知, , ,且函數(shù)的最小正周期為.
(1)求的值;
(2)若, , , ,求的值.
(B)已知, , ,且函數(shù)的最小正周期為.
(1)求的解析式;
(2)若關于的方程,在內(nèi)有兩個不同的解, ,求證: .
查看答案和解析>>
科目:高中數(shù)學 來源: 題型:
【題目】已知函數(shù)的圖象關于直線對稱,且圖象上相鄰最高點的距離為.
⑴求的解析式;
⑵將的圖象向右平移個單位,得到的圖象若關于的方程在上有唯一解,求實數(shù)的取值范圍.
查看答案和解析>>
科目:高中數(shù)學 來源: 題型:
【題目】中國象棋中規(guī)定:馬走“日”字,象走“田”字.如下圖,在中國象棋的半個棋盤(的矩形中每個小方格都是單位正方形)中,若馬在處,可跳到處,也可跳到處,用向量,表示馬走了“一步”.通過探究,你能在圖中畫出馬在處走了一步的所有情況嗎?
查看答案和解析>>
科目:高中數(shù)學 來源: 題型:
【題目】已知函數(shù)在處取得極值.
(1)求的值;
(2)若對任意的,都有成立(其中是函數(shù)的導函數(shù)),求實數(shù)的最小值;
(3)證明:().
查看答案和解析>>
科目:高中數(shù)學 來源: 題型:
【題目】在某地區(qū)某高傳染性病毒流行期間,為了建立指標顯示疫情已受控制,以便向該地區(qū)居民顯示可以過正常生活,有公共衛(wèi)生專家建議的指標是“連續(xù)7天每天新增感染人數(shù)不超過5人”,根據(jù)連續(xù)7天的新增病例數(shù)計算,下列各個選項中,一定符合上述指標的是__________.
①平均數(shù); ②標準差; ③平均數(shù)且標準差;
④平均數(shù)且極差小于或等于2; ⑤眾數(shù)等于1且極差小于或等于4.
查看答案和解析>>
湖北省互聯(lián)網(wǎng)違法和不良信息舉報平臺 | 網(wǎng)上有害信息舉報專區(qū) | 電信詐騙舉報專區(qū) | 涉歷史虛無主義有害信息舉報專區(qū) | 涉企侵權舉報專區(qū)
違法和不良信息舉報電話:027-86699610 舉報郵箱:58377363@163.com