考點(diǎn):利用導(dǎo)數(shù)研究曲線上某點(diǎn)切線方程,函數(shù)恒成立問(wèn)題,利用導(dǎo)數(shù)研究函數(shù)的單調(diào)性
專(zhuān)題:導(dǎo)數(shù)的綜合應(yīng)用
分析:(1)當(dāng)a=2時(shí),求出函數(shù)的導(dǎo)數(shù),利用導(dǎo)數(shù)的幾何意義即可求曲線y=f(x)在點(diǎn)(1,f(x))處的切線方程;
(2)求函數(shù)的導(dǎo)數(shù),利用函數(shù)單調(diào)性和導(dǎo)數(shù)之間的關(guān)系即可求函數(shù)f(x)的單調(diào)區(qū)間;
(3)根據(jù)函數(shù)的單調(diào)性求出函數(shù)的最小值即可實(shí)數(shù)a的取值范圍.
解答:
解:(1)當(dāng)a=2時(shí),f(x)=
x
2-2lnx-
,
f(1)=0,即切點(diǎn)(1,0),
函數(shù)的導(dǎo)數(shù)為f′(x)=x-
,
則f′(1)=1-2=-1,
∴曲線y=f(x)在點(diǎn)(1,0)處的切線方程為y=-(x-1),即x+y-1=0;
(2)函數(shù)f(x)的定義域?yàn)椋?,+∞),
則函數(shù)的導(dǎo)數(shù)為f′(x)=x-
=
,
若a<0,則f′(x)>0,此時(shí)函數(shù)單調(diào)遞增,遞增區(qū)間為(0,+∞),
若a>0,由f′(x)>0得x>
,此時(shí)函數(shù)單調(diào)遞增,遞增區(qū)間為(
,+∞)
由f′(x)<0,解得0<x<
,此時(shí)函數(shù)單調(diào)遞減,遞減區(qū)間為(0,
).
(3)若對(duì)任意的都有f(x)≥0恒成立,
由(2)知,若a<0,函數(shù)f(x)在[1,+∞)單調(diào)遞增,f(x)≥f(1)=0,滿足條件.
若a>0,若a≤1,此時(shí)函數(shù)f(x)在[1,+∞)單調(diào)遞增,f(x)≥f(1)=0,滿足條件,
若a>1,f(x)在[1,
]上單調(diào)遞減,此時(shí)f(x)≤f(1)=0,與f(x)≥0恒成立,滿足,
綜上a≤1.
點(diǎn)評(píng):本題主要考查函數(shù)切線的求解,以及函數(shù)單調(diào)性和函數(shù)最值的求解,綜合考查函數(shù)的導(dǎo)數(shù)的應(yīng)用.