【題目】某鄉(xiāng)鎮(zhèn)為了打贏脫貧攻堅(jiān)戰(zhàn),決定盤活貧困村的各項(xiàng)經(jīng)濟(jì)發(fā)展要素,實(shí)施了產(chǎn)業(yè)、創(chuàng)業(yè)、就業(yè)“三業(yè)并舉”工程.在實(shí)施過程中,引導(dǎo)某貧困村農(nóng)戶因地制宜開展種植某經(jīng)濟(jì)作物.該類經(jīng)濟(jì)作物的質(zhì)量以其質(zhì)量指標(biāo)值來衡量,質(zhì)量指標(biāo)值越大表明質(zhì)量越好,記其質(zhì)量指標(biāo)值為,其質(zhì)量指標(biāo)的等級劃分如下表1

1

質(zhì)量指標(biāo)值

產(chǎn)品等級

優(yōu)秀品

良好品

合格品

不合格品

為了解該類經(jīng)濟(jì)作物在當(dāng)?shù)氐姆N植效益,當(dāng)?shù)匾N了甲、乙兩個品種.并隨機(jī)抽取了甲、乙兩個品種的各件產(chǎn)品,測量了每件產(chǎn)品的質(zhì)量指標(biāo)值,得到下面產(chǎn)品質(zhì)量指標(biāo)值頻率分布直方圖(圖1和圖2.

1)若將頻率視為概率,從乙品種產(chǎn)品中有放回地隨機(jī)抽取件,記“抽出乙品種產(chǎn)品中至少件良好品或以上”為事件,求事件發(fā)生的概率;(結(jié)果保留小數(shù)點(diǎn)后)(參考數(shù)值:,)

2)若甲、乙兩個品種的銷售利潤率與質(zhì)量指標(biāo)值滿足表2

2

質(zhì)量指標(biāo)值

銷售利潤率

其中,試分析,從長期來看,種植甲、乙哪個品種的平均利潤率較大?

【答案】12)種植乙品種的平均利潤率較大

【解析】

1)先求出“從乙品種產(chǎn)品中抽取一件為良好品或以上”的概率,再利用二項(xiàng)分布的概率公式求出事件的對立事件發(fā)生的概率,即可求出;

2)分別計(jì)算出種植甲、乙兩種產(chǎn)品的利潤率的數(shù)學(xué)期望,比較它們的大小即可得出.

1)設(shè)“從乙品種產(chǎn)品中抽取一件為良好品或以上”的概率為,

則根據(jù)頻率分布直方圖可得,

2)由頻率分布直方圖可得,甲品種產(chǎn)品的利潤率的分布列為

乙品種產(chǎn)品的利潤率的分布列為

由于,所以,即.

故種植乙品種的平均利潤率較大.

練習(xí)冊系列答案
相關(guān)習(xí)題

科目:高中數(shù)學(xué) 來源: 題型:

【題目】某大學(xué)為了調(diào)查該校學(xué)生性別與身高的關(guān)系,對該校1000名學(xué)生按照的比例進(jìn)行抽樣調(diào)查,得到身高頻數(shù)分布表如下:

男生身高頻率分布表

男生身高

(單位:厘米)

頻數(shù)

7

10

19

18

4

2

女生身高頻數(shù)分布表

女生身高

(單位:厘米)

頻數(shù)

3

10

15

6

3

3

1)估計(jì)這1000名學(xué)生中女生的人數(shù);

2)估計(jì)這1000名學(xué)生中身高在的概率;

3)在樣本中,從身高在的女生中任取3名女生進(jìn)行調(diào)查,設(shè)表示所選3名學(xué)生中身高在的人數(shù),求的分布列和數(shù)學(xué)期望.(身高單位:厘米)

查看答案和解析>>

科目:高中數(shù)學(xué) 來源: 題型:

【題目】已知函數(shù),其中a為非零常數(shù).

討論的極值點(diǎn)個數(shù),并說明理由;

,證明:在區(qū)間內(nèi)有且僅有1個零點(diǎn);設(shè)的極值點(diǎn),的零點(diǎn)且,求證:

查看答案和解析>>

科目:高中數(shù)學(xué) 來源: 題型:

【題目】某大型超市抽查了100天該超市的日純利潤數(shù)據(jù),并分成了以下幾組(單位:萬元):,,,,.統(tǒng)計(jì)結(jié)果如下表所示(統(tǒng)計(jì)表中每個小組取中間值作為該組數(shù)據(jù)的替代值):

組別

頻數(shù)

5

20

30

30

10

5

1)求這100天該大型超市日純利潤的平均數(shù)及中位數(shù);

2)該天型超市負(fù)責(zé)人決定利用分層抽樣的方法從前2組中隨機(jī)抽出5天數(shù)據(jù)分析日純利潤較少的原因,并從這5天數(shù)據(jù)中再抽出其中2天數(shù)據(jù)進(jìn)行深入分析,求這2天的數(shù)據(jù)恰好來自不同組的概率;

3)利用上述樣本分布估計(jì)總體分布,解決下面問題:該大型超市總經(jīng)理根據(jù)每天的純利潤給員工制定了兩種獎勵方案:

方案一:記日純利潤為萬元,當(dāng)時,獎勵每位員工40/天;當(dāng)時,獎勵每位員工80/天;當(dāng)時,獎勵每位員工120/天;

方案二:日純利潤低于總體中位數(shù)時每名員工發(fā)放獎金50/天,日純利潤不低于總體中位數(shù)時每名員工發(fā)放80元獎金/天;

小張恰好為該大型超市的一位員工,則從統(tǒng)計(jì)角度看,小張選擇哪種獎勵方案更有利?

查看答案和解析>>

科目:高中數(shù)學(xué) 來源: 題型:

【題目】在直角坐標(biāo)系xOy中,已知直線l過點(diǎn)P2,2.以坐標(biāo)原點(diǎn)為極點(diǎn),x軸正半軸為極軸建立極坐標(biāo)系,曲線C的極坐標(biāo)方程為ρρcos2θ4cosθ0.

1)求C的直角坐標(biāo)方程;

2)若lC交于A,B兩點(diǎn),求的最大值.

查看答案和解析>>

科目:高中數(shù)學(xué) 來源: 題型:

【題目】為了了解市民對開設(shè)傳統(tǒng)文化課的態(tài)度,教育機(jī)構(gòu)隨機(jī)抽取了位市民進(jìn)行了解,發(fā)現(xiàn)支持開展的占,在抽取的男性市民人中持支持態(tài)度的為.

1)完成列聯(lián)表,并判斷是否有的把握認(rèn)為性別與支持與否有關(guān)?

支持

不支持

合計(jì)

男性

女性

合計(jì)

2)為了進(jìn)一步征求對開展傳統(tǒng)文化的意見和建議,從抽取的位市民中對不支持的按照分層抽樣的方法抽取位市民,并從抽取的人中再隨機(jī)選取人進(jìn)行座談,求選取的人恰好為女的概率.

附:

查看答案和解析>>

科目:高中數(shù)學(xué) 來源: 題型:

【題目】已知函數(shù),為自然對數(shù)的底數(shù).

1)當(dāng)時,證明,,;

2)若函數(shù)上存在極值點(diǎn),求實(shí)數(shù)的取值范圍.

查看答案和解析>>

科目:高中數(shù)學(xué) 來源: 題型:

【題目】如圖,在三棱錐A-BCD中,,點(diǎn)E為棱CD上的一點(diǎn),且.

1)求證:平面平面BCD;

2)若三棱錐A-BCD的體積為,求三棱錐E-ABD的高.

查看答案和解析>>

科目:高中數(shù)學(xué) 來源: 題型:

【題目】某大學(xué)為了調(diào)查該校學(xué)生性別與身高的關(guān)系,對該校1000名學(xué)生按照的比例進(jìn)行抽樣調(diào)查,得到身高頻數(shù)分布表如下:

男生身高頻率分布表

男生身高

(單位:厘米)

頻數(shù)

7

10

19

18

4

2

女生身高頻數(shù)分布表

女生身高

(單位:厘米)

頻數(shù)

3

10

15

6

3

3

1)估計(jì)這1000名學(xué)生中女生的人數(shù);

2)估計(jì)這1000名學(xué)生中身高在的概率;

3)在樣本中,從身高在的女生中任取2名女生進(jìn)行調(diào)查,求這2名學(xué)生身高在的概率.(身高單位:厘米)

查看答案和解析>>

同步練習(xí)冊答案