【題目】已知某書店共有韓寒的圖書6種,其中價格為25元的有2種,18元的有3種,16元的有1種.書店若把這6種韓寒的圖書打包出售,據(jù)統(tǒng)計每套的售價與每天的銷售數(shù)量如下表所示:

售價x/元

105

108

110

112

銷售數(shù)量y/套

40

30

25

15

(1)根據(jù)上表,利用最小二乘法得到回歸直線方程,求;

(2)若售價為100元,則每天銷售的套數(shù)約為多少(結(jié)果保留到整數(shù))?

【答案】(1) ; (2)58套圖書.

【解析】

(1)根據(jù)題意,由最小二乘法計算可得、的值,將其代入回歸直線的方程即可得答案;

(2)由(1)的結(jié)論,將x=100代入方程y的值,即可得答案.

(1)由題目中的數(shù)據(jù)可得,=108.75,=27.5,

=27.5-(-3.46)×108.75=403.775.

(2)由(1)知=-3.46x+403.775,

當(dāng)x=100時,=-3.46×100+403.775≈58,

故售價為100元時,每天大約可以銷售58套圖書.

練習(xí)冊系列答案
相關(guān)習(xí)題

科目:高中數(shù)學(xué) 來源: 題型:

【題目】函數(shù)f(x)=(x2﹣2x﹣3)的單調(diào)減區(qū)間是(  )
A.(3,+∞)
B.(1,+∞)
C.(﹣∞,1)
D.(﹣∞,﹣1)

查看答案和解析>>

科目:高中數(shù)學(xué) 來源: 題型:

【題目】在平面直角坐標(biāo)系xOy中,雙曲線 =1(a>0,b>0)的右支與焦點為F的拋物線x2=2py(p>0)交于A,B兩點,若|AF|+|BF|=4|OF|,則該雙曲線的漸近線方程為

查看答案和解析>>

科目:高中數(shù)學(xué) 來源: 題型:

【題目】已知函數(shù)在x=-1與x=2處都取得極值.

(1)求的值及函數(shù)的單調(diào)區(qū)間;

(2)若對,不等式恒成立,求c的取值范圍.

查看答案和解析>>

科目:高中數(shù)學(xué) 來源: 題型:

【題目】根據(jù)如下所示的列聯(lián)表得到如下四個判斷:①在犯錯誤的概率不超過0.001的前提下認為患肝病與嗜酒有關(guān);②在犯錯誤的概率不超過0.01的前提下認為患肝病與嗜酒有關(guān);③認為患肝病與嗜酒有關(guān)的出錯的可能為0.001%;④沒有證據(jù)顯示患肝病與嗜酒有關(guān).

分類

嗜酒

不嗜酒

總計

患肝病

7 775

42

7 817

未患肝病

2 099

49

2 148

總計

9 874

91

9 965

其中正確命題的個數(shù)為(  )

A. 1 B. 2 C. 3 D. 4

查看答案和解析>>

科目:高中數(shù)學(xué) 來源: 題型:

【題目】以下資料是一位銷售經(jīng)理收集到的每年銷售額y(千元)和銷售經(jīng)驗x(年)的關(guān)系:

銷售經(jīng)驗x/年

1

3

4

4

6

8

10

10

11

13

年銷售額y/千元

80

97

92

102

103

111

119

123

117

136

(1)依據(jù)這些數(shù)據(jù)畫出散點圖并作直線=78+4.2x,計算;

(2)依據(jù)這些數(shù)據(jù)求回歸直線方程并據(jù)此計算;

(3)比較(1) (2)中的殘差平方和的大小.

查看答案和解析>>

科目:高中數(shù)學(xué) 來源: 題型:

【題目】已知函數(shù).

(Ⅰ)求函數(shù)的單調(diào)區(qū)間;

(Ⅱ)當(dāng)時,證明:對任意的.

查看答案和解析>>

科目:高中數(shù)學(xué) 來源: 題型:

【題目】若存在常數(shù),使得數(shù)列滿足對一切恒成立,則稱為“可控數(shù)列”.

(1) 若數(shù)列的通項公式為,試判斷數(shù)列是否為“可控數(shù)列”?并說明理由;

(2) 是首項為5的“可控數(shù)列”,且單調(diào)遞減,問是否存在常數(shù),使?若存在,求出的值;若不存在,請說明理由;

(3) 若“可控數(shù)列”的首項為2,,求不同取值的個數(shù)及最大值.(直接寫出結(jié)果)

查看答案和解析>>

科目:高中數(shù)學(xué) 來源: 題型:

【題目】A袋中有1個紅球和1個黑球,B袋中有2個紅球和1個黑球,A袋中任取1個球與B袋中任取1個球互換,這樣的互換進行了一次,求:

(1)A袋中紅球恰是1個的概率;

(2)A袋中紅球至少是1個的概率.

查看答案和解析>>

同步練習(xí)冊答案