13.設(shè)條件p:2x2-3x+1≤0;條件q:(x-a)[x-(a+1)]≤0.若¬p是¬q的必要不充分條件,求a的取值范圍.

分析 分別求出關(guān)于p,q成立的x的范圍,結(jié)合充分必要條件的定義,得到關(guān)于a的不等式組,解出即可.

解答 解:設(shè)A={x|2x2-3x+1≤0},B={x|(x-a)[x-(a+1)]≤0},
化簡得A={x|$\frac{1}{2}≤x≤1$},B={x|a≤x≤a+1}.              
由于?p是?q的必要不充分條件,
故p是q的充分不必要條件,即A?B,
∴$\left\{{\begin{array}{l}{a≤\frac{1}{2}}\\{a+1≥1}\end{array}}\right.$,解得$0≤a≤\frac{1}{2}$,
故所求實數(shù)a的取值范圍是$[0,\frac{1}{2}]$.

點評 本題考查了充分必要條件,考查結(jié)合的包含關(guān)系以及命題的關(guān)系,是一道基礎(chǔ)題.

練習(xí)冊系列答案
相關(guān)習(xí)題

科目:高中數(shù)學(xué) 來源: 題型:選擇題

3.公元263年左右,我國數(shù)學(xué)家劉徽發(fā)現(xiàn)當(dāng)圓內(nèi)接正多邊形的邊數(shù)無限增加時,多邊形面積可無限逼近圓的面積,并創(chuàng)立了“割圓術(shù)”,利用“割圓術(shù)”劉徽得到了圓周率精確到小數(shù)點后兩位的近似值3.14,就是著名的“徽率”.如圖是利用劉徽的“割圓術(shù)”思想設(shè)計的一個程序框圖,則輸出的值為( 。▍⒖紨(shù)據(jù):sin15°=0.2588,sin7.5°=0.1305)
A.22B.23C.24D.25

查看答案和解析>>

科目:高中數(shù)學(xué) 來源: 題型:選擇題

4.已知奇函數(shù)f(x)在(0,+∞)上是增函數(shù),且f(2)=0,則f(x)>0的解集為( 。
A.(0,2)B.(-2,0)C.(-2,0)∪(2,+∞)D.(-2,2)

查看答案和解析>>

科目:高中數(shù)學(xué) 來源: 題型:選擇題

1.在△ABC中,a,b,c分別是角A,B,C的對邊,且A=60°,a=7,c=5,則△ABC的面積等于( 。
A.$\frac{{15\sqrt{3}}}{4}$B.$\frac{15}{4}$C.$10\sqrt{3}$D.10

查看答案和解析>>

科目:高中數(shù)學(xué) 來源: 題型:選擇題

8.設(shè)直線l經(jīng)過橢圓$\frac{x^2}{4}+{y^2}=1$的右焦點且傾斜角為45°,若直線l與橢圓相交于A,B兩點,則|AB|=( 。
A.$\frac{2}{5}$B.$\frac{4}{5}$C.$\frac{6}{5}$D.$\frac{8}{5}$

查看答案和解析>>

科目:高中數(shù)學(xué) 來源: 題型:解答題

18.已知函數(shù)f(x)=$\frac{1}{x}$+alnx(a∈R,且a≠0).
(1)若函數(shù)f(x)在區(qū)間(2016,+∞)上單調(diào)遞增,求實數(shù)a的取值范圍;
(2)若在區(qū)間[1,e]上至少存在一點x0.使得f(x0)<0成立,求實數(shù)a的取值范圍.

查看答案和解析>>

科目:高中數(shù)學(xué) 來源: 題型:解答題

5.已知冪函數(shù)f(x)=x9-3m(m∈N*)的圖象關(guān)于原點對稱,且在R上函數(shù)值隨x的增大而增大.
(1)求f(x)表達式;
(2)求滿足f(a+1)+f(3a-4)<0的a的取值范圍.

查看答案和解析>>

科目:高中數(shù)學(xué) 來源: 題型:選擇題

2.一條直線與兩條異面直線中的一條平行,則它和另一條的位置關(guān)系是( 。
A.異面B.相交C.異面或平行D.相交或異面

查看答案和解析>>

科目:高中數(shù)學(xué) 來源: 題型:選擇題

3.已知集合A={-1,0,1},B={y|y=|x|},則A∩B=(  )
A.{0}B.{1}C.{0,1}D.{-1,0,1}

查看答案和解析>>

同步練習(xí)冊答案