(1)m為何值時(shí),f(x)=x2+2mx+3m+4.有且僅有一個(gè)零點(diǎn);
(2)若函數(shù)f(x)=|4x-x2|+a有4個(gè)零點(diǎn),求實(shí)數(shù)a的取值范圍.
考點(diǎn):函數(shù)的零點(diǎn)與方程根的關(guān)系
專(zhuān)題:函數(shù)的性質(zhì)及應(yīng)用
分析:(1)根據(jù)一元二次函數(shù)和一元二次方程之間的關(guān)系,利用判別式△=0,即可得到結(jié)論.
(2)利用數(shù)形結(jié)合將函數(shù)零點(diǎn)問(wèn)題轉(zhuǎn)化為函數(shù)圖象的交點(diǎn)個(gè)數(shù)問(wèn)題即可得到結(jié)論.
解答: 解:(1)f(x)=x2+2mx+3m+4有且僅有一個(gè)零點(diǎn)?方程f(x)=0有兩個(gè)相等實(shí)根
?△=0,
即4m2-4(3m+4)=0,
即m2-3m-4=0,∴m=4或m=-1.
(2)令f(x)=0,得|4x-x2|+a=0,
即|4x-x2|=-a.
令g(x)=|4x-x2|,h(x)=-a.
作出g(x)、h(x)的圖象.
由圖象可知,當(dāng)0<-a<4,
即-4<a<0時(shí),g(x)與h(x)的圖象有4個(gè)交點(diǎn),
即f(x)有4個(gè)零點(diǎn).
故a的取值范圍為(-4,0).
點(diǎn)評(píng):本題主要考查函數(shù)零點(diǎn)的判斷以及函數(shù)零點(diǎn)的應(yīng)用,利用方程和函數(shù)之間的關(guān)系,結(jié)合數(shù)形結(jié)合是解決本題的關(guān)鍵.
練習(xí)冊(cè)系列答案
相關(guān)習(xí)題

科目:高中數(shù)學(xué) 來(lái)源: 題型:

等邊三角形ABC的邊長(zhǎng)為1,
BC
=
a
,
CA
=
b
,
AB
=
c
,那么
a
b
+
b
c
+
c
a
等于( 。
A、-
3
2
B、-3
C、
3
2
D、3

查看答案和解析>>

科目:高中數(shù)學(xué) 來(lái)源: 題型:

設(shè)
sinα+cosα
sinα-cosα
=2,則tan(α+
π
4
)=( 。
A、-2B、2C、-4D、4

查看答案和解析>>

科目:高中數(shù)學(xué) 來(lái)源: 題型:

要得到函數(shù)y=sinx的圖象,只需將函數(shù)y=cos(x-
π
3
)+2的圖象沿向量
a
平移得到,則
a
為( 。
A、(-
π
6
,2)
B、(
π
6
,-2)
C、(-
π
6
,-2)
D、(
π
6
,2)

查看答案和解析>>

科目:高中數(shù)學(xué) 來(lái)源: 題型:

已知x>2,y>4,xy=32,求log2
x
2
•log2
y
4
的最大值以及相應(yīng)的x和y的值.

查看答案和解析>>

科目:高中數(shù)學(xué) 來(lái)源: 題型:

已知函數(shù)f(x)=-x2+6x-5,x∈[t,t+1],求f(x)的最大值.

查看答案和解析>>

科目:高中數(shù)學(xué) 來(lái)源: 題型:

如圖示,已知A、B、C為平面上的三個(gè)定點(diǎn),∠ACB=60°,動(dòng)點(diǎn)P在∠ACB的平分線上,記
CB
=
a
,
CA
=
b
,|
CP
|=m(m>0),
(1)若|
a
|=|
b
|,試用m、
a
、
b
表示
CP
;
(2)問(wèn)當(dāng)m為何值時(shí),
CP
•(
BP
+
AP
)取最小值,并求此最小值.

查看答案和解析>>

科目:高中數(shù)學(xué) 來(lái)源: 題型:

已知函數(shù)f(x)=3ax2-5bx+6(a∈R)
(1)若a=
1
3
,b=1,解關(guān)于x的不等式f(x)≥0;
(2)若不等式f(x)>0的解集為{x|-
3
2
<x<
2
3
},求a,b的值.

查看答案和解析>>

科目:高中數(shù)學(xué) 來(lái)源: 題型:

已知直線與拋物線y2=2px(p>0)交于A,B兩點(diǎn),且OA⊥OB.
(1)求AB中點(diǎn)的軌跡方程;
(2)求證:AB經(jīng)過(guò)一定點(diǎn),并求出定點(diǎn)坐標(biāo);
(3)作OD⊥AB交AB于點(diǎn)D,求點(diǎn)D的軌跡方程.

查看答案和解析>>

同步練習(xí)冊(cè)答案