解:(1)由已知,OC⊥OB,OC⊥OA′從而平面A′OB⊥平面ABC.
過點(diǎn)A′作A′D⊥AB,垂足為D,則A′D⊥平面ABC,…(2分)
∴∠A′ED=30°,又A′O=BO=1,∴∠A′OD=60°,
從而A′D=A′O•sin60°=
.…(4分)
過點(diǎn)D作DE⊥BC,垂足為E,連接A′E,據(jù)三垂線定理,A′E⊥BC.
∴∠A′ED為二面角A′-BC-A的平面角.…(5分)
由已知,A′E=1,在Rt△A′DE中sin∠A′ED=
=
∴∠A′ED=60°故二面角A′-BC-A的大小為60°.…(6分)
(2)設(shè)BC=x,∠A′CB=θ,則A′C=x,∠OCB=π-θ.
在Rt△BOC中,sin∠OCB=
∴sin(π-θ)=
,即sinθ=
…(9分)
在△A′DB中,A′B=
=
在△A′BC中,A′B
2=A′C
2+BC
2-2A′C•BC•cos∠A′CB
∴3=x
2+x
2-2x
2•cosθ,即cosθ=1-
…(12分)
∵sin
2θ+cos
2θ=1
∴
(1-
)
2=1
解得x=
故BC=
…(14分)
分析:(1)過點(diǎn)A′作A′D⊥AB,垂足為D,由已知中AC=BC,沿OC將△AOC折起到△A′OC的位置,易根據(jù)面面垂直的判定定理得到平面A′OB⊥平面ABC,進(jìn)而得到A′D⊥平面ABC,再根據(jù)已知中直線A′B與平面ABC成30°角,求出A′D的長(zhǎng)度,過點(diǎn)D作DE⊥BC,垂足為E,連接A′E,易得∠A′ED為二面角A′-BC-A的平面角,解Rt△A′DE即可求出二面角A′-BC-A的大;
(2)設(shè)BC=x,∠A′CB=θ,則A′C=x,∠OCB=π-θ,解Rt△BOC,△A′DB,△A′BC,可以求出x值的大小,進(jìn)而得到BC邊的長(zhǎng).
點(diǎn)評(píng):本題考查的知識(shí)點(diǎn)是二面角的平面角及求法,空間兩點(diǎn)之間的距離計(jì)算,其中(1)的關(guān)鍵是構(gòu)造出∠A′ED為二面角A′-BC-A的平面角,(2)的關(guān)鍵是設(shè)出BC邊的長(zhǎng),根據(jù)已知條件,結(jié)合解三角形的方法(余弦定理)構(gòu)造出關(guān)于x的方程.