已知各項(xiàng)均為正數(shù)的數(shù)列{an}滿足an+12=2an2+anan+1,a2+a4=2a3+4,其中n∈N*
(Ⅰ)求數(shù){an}的通項(xiàng)公式;
(Ⅱ)設(shè)數(shù){bn}的前n項(xiàng)和Tn,令bn=an2,其中n∈N*,試比較
Tn+1+12
4Tn
2log2bn+1+2
2log2bn-1
的大小,并加以證明.
分析:(Ⅰ)由an+12=2an2+anan+1,移項(xiàng)分角因式得(an+1+an)(2an-an+1)=0,得2an=an+1,得出數(shù)列{an}是公比為2的等比數(shù)列,由a2+a4=2a3+4得a1=2,
用等比數(shù)列的通項(xiàng)公式得出數(shù)列{an}的通項(xiàng)公式;
(Ⅱ)由(Ⅰ)得bn=an2=22n=4n,得數(shù)列{bn}是首項(xiàng)為4,公比是4的等比數(shù)列,由等比數(shù)列的前n項(xiàng)和求出Tn,進(jìn)一步表示出
Tn+1+12
4Tn
2log2bn+1+2
2log2bn-1
,兩者作差,不能判號(hào)的那部分用數(shù)學(xué)歸納法來證:第一步,n=1時(shí),不等式成立,第二步,假設(shè)n=k時(shí),結(jié)論成立,下面證明n=k+1時(shí)也成立.
解答:解:(Ⅰ)因?yàn)閍n+12=2an2+anan+1,即(an+1+an)(2an-an+1)=0
又an>0,所以有2an-an+1=0,所以2an=an+1
所以數(shù)列{an}是公比為2的等比數(shù)列(2分)
由a2+a4=2a3+4得2a1+8a1=8a1+4,解得a1=2
故數(shù)列{an}的通項(xiàng)公式為an=2n(n∈N*)(4分)
(Ⅱ)因bn=an2=22n=4n,所以b1=4,
bn+1
bn
=4
即數(shù)列{bn}是首項(xiàng)為4,公比是4的等比數(shù)列
所以Tn=
4
3
(4n-1)(6分)
Tn+1+12
4Tn
=
4n+1+8
4(4n-1)
=1+
3
4n-1

2log2bn+1 +2
2log2bn-1
=
4n+6
4n-1
=1+
7
4n-1

Tn+1+12
4Tn
-
2log2bn+1+2
2log2bn-1
=
3
4n-1
-
7
4n-1
=
4(3n+1-7•4n-1)
(4n-1)(4n-1)

猜想:7•4n-1>3n+1(8分)
①當(dāng)n=1時(shí),7•40=7>3×1+1=4,上面不等式顯然成立;
②假設(shè)當(dāng)n=k時(shí),不等式7•4k-1>3k+1成立(9分)
當(dāng)n=k+1時(shí),
7×4k=4×7×4k-1>4(3k+1)=12k+4>3k+4=3(k+1)+1
綜上①②對(duì)任意的n∈N+均有7•4n-1>3n+1(11分)
又4n-1>0,4n-1>0
Tn+1+12
4Tn
-
2log2bn+1 +2
2log2bn-1
<0

所以對(duì)任意的n∈N+均有
Tn+1+12
4Tn
2log2bn+1+2
2log2bn-1
(12分)
點(diǎn)評(píng):本題難點(diǎn)之一是求數(shù){an}的通項(xiàng)公式時(shí),要把題干中的等式變形得到相鄰兩項(xiàng)的關(guān)系;難點(diǎn)之二在于要計(jì)算出兩個(gè)復(fù)雜的式子,在學(xué)生的計(jì)算能力越來越弱的情況下,這個(gè)實(shí)屬不易;難點(diǎn)之三在于作差比較大小,得出的結(jié)果不能判別符號(hào),不少學(xué)生在此會(huì)放棄;難點(diǎn)之四在于要想到用數(shù)學(xué)歸納法來證明差中的一部分.
練習(xí)冊(cè)系列答案
相關(guān)習(xí)題

科目:高中數(shù)學(xué) 來源: 題型:解答題

已知各項(xiàng)均為正數(shù)的數(shù)列{an}滿足an+12=2an2+anan+1,a2+a4=2a3+4,其中n∈N*
(Ⅰ)求數(shù){an}的通項(xiàng)公式;
(Ⅱ)設(shè)數(shù){bn}的前n項(xiàng)和Tn,令bn=an2,其中n∈N*,試比較數(shù)學(xué)公式數(shù)學(xué)公式的大小,并加以證明.

查看答案和解析>>

科目:高中數(shù)學(xué) 來源:青島二模 題型:解答題

已知各項(xiàng)均為正數(shù)的數(shù)列{an}滿足an+12=2an2+anan+1,a2+a4=2a3+4,其中n∈N*
(Ⅰ)求數(shù){an}的通項(xiàng)公式;
(Ⅱ)設(shè)數(shù){bn}的前n項(xiàng)和Tn,令bn=an2,其中n∈N*,試比較
Tn+1+12
4Tn
2log2bn+1+2
2log2bn-1
的大小,并加以證明.

查看答案和解析>>

科目:高中數(shù)學(xué) 來源:《第2章 數(shù)列》、《第3章 不等式》2010年單元測(cè)試卷(陳經(jīng)綸中學(xué))(解析版) 題型:解答題

已知各項(xiàng)均為正數(shù)的數(shù)列{an}滿足an+12=2an2+anan+1,a2+a4=2a3+4,其中n∈N*
(Ⅰ)求數(shù){an}的通項(xiàng)公式;
(Ⅱ)設(shè)數(shù){bn}的前n項(xiàng)和Tn,令bn=an2,其中n∈N*,試比較的大小,并加以證明.

查看答案和解析>>

科目:高中數(shù)學(xué) 來源:2012年高考復(fù)習(xí)方案配套課標(biāo)版月考數(shù)學(xué)試卷(二)(解析版) 題型:解答題

已知各項(xiàng)均為正數(shù)的數(shù)列{an}滿足an+12=2an2+anan+1,a2+a4=2a3+4,其中n∈N*
(Ⅰ)求數(shù){an}的通項(xiàng)公式;
(Ⅱ)設(shè)數(shù){bn}的前n項(xiàng)和Tn,令bn=an2,其中n∈N*,試比較的大小,并加以證明.

查看答案和解析>>

同步練習(xí)冊(cè)答案