如圖是一個(gè)二次函數(shù)的圖象.
(1)寫出這個(gè)二次函數(shù)的零點(diǎn);
(2)寫出這個(gè)二次函數(shù)的解析式及時(shí)函數(shù)的值域
年級(jí) | 高中課程 | 年級(jí) | 初中課程 |
高一 | 高一免費(fèi)課程推薦! | 初一 | 初一免費(fèi)課程推薦! |
高二 | 高二免費(fèi)課程推薦! | 初二 | 初二免費(fèi)課程推薦! |
高三 | 高三免費(fèi)課程推薦! | 初三 | 初三免費(fèi)課程推薦! |
科目:高中數(shù)學(xué) 來源: 題型:解答題
(13分)定義在R上的增函數(shù)y=f(x)對(duì)任意x,yR都有f(x+y)=f(x)+f(y),則
(1)求f(0) (2) 證明:f(x)為奇函數(shù)
(3)若對(duì)任意恒成立,求實(shí)數(shù)k的取值范圍
查看答案和解析>>
科目:高中數(shù)學(xué) 來源: 題型:解答題
某化工廠生產(chǎn)的某種化工產(chǎn)品,當(dāng)年產(chǎn)量在150噸至250噸之間時(shí),其生產(chǎn)的總成本(萬元)與年產(chǎn)量(噸)之間的函數(shù)關(guān)系式近似地表示為.問:(1)每噸平均出廠價(jià)為16萬元,年產(chǎn)量為多少噸時(shí),可獲得最大利潤(rùn)?并求出最大利潤(rùn);
(2)年產(chǎn)量為多少噸時(shí),每噸的平均成本最低?并求出最低成本。
查看答案和解析>>
科目:高中數(shù)學(xué) 來源: 題型:解答題
(本小題滿分13分) 2010年11月在廣州召開亞運(yùn)會(huì),某小商品公司開發(fā)一種亞運(yùn)會(huì)紀(jì)念品,每件產(chǎn)品的成本是15元,銷售價(jià)是20元,月平均銷售a件,通過改進(jìn)工藝,產(chǎn)品的成本不變,質(zhì)量和技術(shù)含金量提高,市場(chǎng)分析的結(jié)果表明:如果產(chǎn)品的銷售價(jià)提高的百分率為x(0<x<1),那么月平均銷售量減少的百分率為x2,記改進(jìn)工藝后,該公司銷售紀(jì)念品的月平均利潤(rùn)是y(元).
(1)寫出y與x的函數(shù)關(guān)系式;
(2)改進(jìn)工藝后,確定該紀(jì)念品的售價(jià),使該公司銷售該紀(jì)念品的月平均利潤(rùn)最大.
查看答案和解析>>
科目:高中數(shù)學(xué) 來源: 題型:解答題
(本小題滿分12分)()
(1)求的定義域;
(2)問是否存在實(shí)數(shù)、,當(dāng)時(shí),的值域?yàn)?img src="http://thumb.zyjl.cn/pic5/tikupic/fc/e/rgw3.gif" style="vertical-align:middle;" />,且 若存在,求出、的值,若不存在,說明理由.
查看答案和解析>>
科目:高中數(shù)學(xué) 來源: 題型:解答題
(14分)已知f(x)是定義在[—1,1]上的奇函數(shù),且f (1)=1,若m,n∈[—
1,1],m+n≠0時(shí)有
(1)判斷f (x)在[—1,1]上的單調(diào)性,并證明你的結(jié)論;
(2)解不等式:;
(3)若f (x)≤對(duì)所有x∈[—1,1],∈[—1,1]恒成立,求實(shí)數(shù)t的取值范圍.
查看答案和解析>>
科目:高中數(shù)學(xué) 來源: 題型:解答題
已知函數(shù)
(1)是否存在實(shí)數(shù),使函數(shù)是上的奇函數(shù),若不存在,說明理由,若存在實(shí)數(shù),求函數(shù)的值域;
(2)探索函數(shù)的單調(diào)性,并利用定義加以證明。
查看答案和解析>>
百度致信 - 練習(xí)冊(cè)列表 - 試題列表
湖北省互聯(lián)網(wǎng)違法和不良信息舉報(bào)平臺(tái) | 網(wǎng)上有害信息舉報(bào)專區(qū) | 電信詐騙舉報(bào)專區(qū) | 涉歷史虛無主義有害信息舉報(bào)專區(qū) | 涉企侵權(quán)舉報(bào)專區(qū)
違法和不良信息舉報(bào)電話:027-86699610 舉報(bào)郵箱:58377363@163.com