【題目】一個(gè)正方體的平面展開圖及該正方體的直觀圖的示意圖如圖所示.

(1)請按字母FG、H標(biāo)記在正方體相應(yīng)地頂點(diǎn)處(不需要說明理由);

(2)判斷平面BEG與平面ACH的位置關(guān)系.并說明你的結(jié)論;

(3)證明:直線DF平面BEG.

【答案】1)見解析;(2平面BEG平面ACH;(3)證明見解析

【解析】試題分析:(1)折疊成正方體即可得出;(2)根據(jù)條件可證四邊形BCEH為平行四邊形,因此BE∥CH,線面平行判定定理即可得證;(3)根據(jù)DH平面EFGH可得DHEG,EGFH,可證EG平面BFHD,所以DFEG,同理可證同理DFBG,所以命題得證.

試題解析:

 (1)點(diǎn)F、G、H的位置如圖所示.

(2)平面BEC平面ACH.證明如下:

因?yàn)?/span>ABCDEFGH為正方體,所以BCFG,BCFG,

FGEHFGEH,所以BCEH,BCEH

于是四邊形BCEH為平行四邊形,

所以BECH

CH平面ACH,BE平面ACH,

所以BE平面ACH,

同理,BG平面ACH,

BEBGB,

所以平面BEG平面ACH

(3)連接FHEG于點(diǎn)O,連接BD

因?yàn)?/span>ABCDEFGH為正方體,所以DH平面EFGH,

因?yàn)?/span>EG平面EFGH,所以DHEG,

EGFHEGFHO,

所以EG平面BFHD

DF平面BFHD,所以DFEG

同理DFBG,

EGBGG,

所以DF平面BEG

練習(xí)冊系列答案
相關(guān)習(xí)題

科目:高中數(shù)學(xué) 來源: 題型:

【題目】如圖所示,P是四邊形ABCD所在平面外的一點(diǎn),四邊形ABCDDAB60°且邊長為a的菱形側(cè)面PAD為正三角形,其所在平面垂直于底面ABCD

1GAD邊的中點(diǎn),求證:BG平面PAD

2求證:ADPB

查看答案和解析>>

科目:高中數(shù)學(xué) 來源: 題型:

【題目】在直角坐標(biāo)系xOy中,直線l1的參數(shù)方程為 ,(t為參數(shù)),直線l2的參數(shù)方程為 ,(m為參數(shù)).設(shè)l1與l2的交點(diǎn)為P,當(dāng)k變化時(shí),P的軌跡為曲線C.
(1)寫出C的普通方程;
(2)以坐標(biāo)原點(diǎn)為極點(diǎn),x軸正半軸為極軸建立極坐標(biāo)系,設(shè)l3:ρ(cosθ+sinθ)﹣ =0,M為l3與C的交點(diǎn),求M的極徑.

查看答案和解析>>

科目:高中數(shù)學(xué) 來源: 題型:

【題目】下列各對直線不互相垂直的是 (  )

A. l1的傾斜角為120°,l2過點(diǎn)P(1,0),Q(4, )

B. l1的斜率為-,l2過點(diǎn)P(1,1),Q

C. l1的傾斜角為30°,l2過點(diǎn)P(3, ),Q(42)

D. l1過點(diǎn)M(1,0),N(4,-5),l2過點(diǎn)P(-6,0),Q(-1,3)

查看答案和解析>>

科目:高中數(shù)學(xué) 來源: 題型:

【題目】(2017·北京高考)由四棱柱ABCDA1B1C1D1截去三棱錐C1B1CD1后得到的幾何體如圖所示.四邊形ABCD為正方形,OACBD的交點(diǎn),EAD的中點(diǎn),A1E⊥平面ABCD.

(1)證明:A1O∥平面B1CD1;

(2)設(shè)MOD的中點(diǎn),證明:平面A1EM⊥平面B1CD1.

查看答案和解析>>

科目:高中數(shù)學(xué) 來源: 題型:

【題目】已知直線a,b和平面M,N,且a⊥M,則下列說法正確的是 (  )

A. b∥Mb⊥a B. b⊥ab∥M

C. N⊥Ma∥N D. aNM∩N≠

查看答案和解析>>

科目:高中數(shù)學(xué) 來源: 題型:

【題目】如圖,在直角梯形ABCD中,BCDCAEDC,MN分別是AD,BE的中點(diǎn),將三角形ADE沿AE折起,則下列說法正確的是________(填序號).

①不論D折至何位置(不在平面ABC內(nèi)),都有MN∥平面DEC;②不論D折至何位置,都有MNAE;③不論D折至何位置(不在平面ABC內(nèi)),都有MNAB;④在折起過程中,一定存在某個(gè)位置,使ECAD.

查看答案和解析>>

科目:高中數(shù)學(xué) 來源: 題型:

【題目】已知函數(shù)f(x)= x2﹣alnx(a∈R)
(1)若函數(shù)f(x)在x=2處的切線方程為y=x+b,求a,b的值;
(2)討論方程f(x)=0解的個(gè)數(shù),并說明理由.

查看答案和解析>>

科目:高中數(shù)學(xué) 來源: 題型:

【題目】已知函數(shù)g(x)=ax2-2ax+1+b(a>0)在區(qū)間[2,4]上的最大值為9,最小值為1,記f(x)=g(|x|)。

(1)求實(shí)數(shù)a,b的值;

(2)若不等式f(2k)>1成立,求實(shí)數(shù)k的取值范圍;

(3)定義在[p,q]上的函數(shù)(x),設(shè)p=x0<x1<…<xi-1<xi<…<xn=q,x1,x2,…,xn-l將區(qū)間[p,q]任意劃分成n個(gè)小區(qū)間,如果存在一個(gè)常數(shù)M>0,使得和式恒成立,則稱函數(shù)(x)為在[p,q]上的有界變差函數(shù)試判斷函數(shù)f(x)是否為在[0,4]上的有界變差函數(shù)?若是,求M的最小值;若不是,請說明理由。

查看答案和解析>>

同步練習(xí)冊答案