【題目】右邊程序框圖的算法思路源于我國(guó)古代數(shù)學(xué)名著《九章算術(shù)》中的“更相減損術(shù)”. 執(zhí)行該程序框圖,若輸入的分別為16,20,則輸出的( )
A. 0B. 2C. 4D. 1
【答案】C
【解析】
此程序框圖是選擇結(jié)構(gòu)圖與循環(huán)結(jié)構(gòu)的綜合,輸入a,b值后,模擬程序逐層判斷,得出結(jié)果。
解:輸入的值,分別為16,20,
第一次循環(huán):第一層判斷:滿足,進(jìn)入第二層選擇結(jié)構(gòu),
第二層判斷:不滿足,滿足,故;
第二次循環(huán):第一層判斷:滿足,進(jìn)入第二層選擇結(jié)構(gòu),
第二層判斷:滿足,故;
第三次循環(huán):第一層判斷:滿足,進(jìn)入第二層選擇結(jié)構(gòu),
第二層判斷:滿足,故;
第四次循環(huán):第一層判斷:滿足,進(jìn)入第二層選擇結(jié)構(gòu),
第二層判斷:滿足,故;
第五次循環(huán):第一層判斷:滿足,故輸出4,選C
年級(jí) | 高中課程 | 年級(jí) | 初中課程 |
高一 | 高一免費(fèi)課程推薦! | 初一 | 初一免費(fèi)課程推薦! |
高二 | 高二免費(fèi)課程推薦! | 初二 | 初二免費(fèi)課程推薦! |
高三 | 高三免費(fèi)課程推薦! | 初三 | 初三免費(fèi)課程推薦! |
科目:高中數(shù)學(xué) 來(lái)源: 題型:
【題目】“有黑掃黑、無(wú)黑除惡、無(wú)惡治亂”,維護(hù)社會(huì)穩(wěn)定和和平發(fā)展.掃黑除惡期間,大量違法分子主動(dòng)投案,某市公安機(jī)關(guān)對(duì)某月連續(xù)7天主動(dòng)投案的人員進(jìn)行了統(tǒng)計(jì),表示第天主動(dòng)投案的人數(shù),得到統(tǒng)計(jì)表格如下:
1 | 2 | 3 | 4 | 5 | 6 | 7 | |
3 | 4 | 5 | 5 | 5 | 6 | 7 |
(1)若與具有線性相關(guān)關(guān)系,請(qǐng)根據(jù)上表提供的數(shù)據(jù),用最小二乘法求出關(guān)于的線性回歸方程;
(2)判定變量與之間是正相關(guān)還是負(fù)相關(guān).(寫出正確答案,不用說(shuō)明理由)
(3)預(yù)測(cè)第八天的主動(dòng)投案的人數(shù)(按四舍五入取到整數(shù)).
參考公式:, ./span>
查看答案和解析>>
科目:高中數(shù)學(xué) 來(lái)源: 題型:
【題目】為研究男、女生的身高差異,現(xiàn)隨機(jī)從高二某班選出男生、女生各10人,并測(cè)量他們的身高,測(cè)量結(jié)果如下(單位:厘米):
男:164 178 174 185 170 158 163 165 161 170
女:165 168 156 170 163 162 158 153 169 172
(1)根據(jù)測(cè)量結(jié)果完成身高的莖葉圖(單位:厘米),并分別求出男、女生身高的平均值.
(2)請(qǐng)根據(jù)測(cè)量結(jié)果得到20名學(xué)生身高的中位數(shù)(單位:厘米),將男、女生身高不低于和低于的人數(shù)填入下表中,并判斷是否有的把握認(rèn)為男、女生身高有差異?
人數(shù) | 男生 | 女生 |
身高 | ||
身高 |
參照公式:
| 0.10 | 0.05 | 0.025 | 0.010 | 0.005 | 0.001 |
2.706 | 3.841 | 5.024 | 6.635 | 7.879 | 10.828 |
(3)若男生身高低于165厘米為偏矮,不低于165厘米且低于175厘米為正常,不低于175厘米為偏高.假設(shè)可以用測(cè)量結(jié)果的頻率代替概率,試求從高二的男生中任意選出2人,恰有1人身高屬于正常的概率.
查看答案和解析>>
科目:高中數(shù)學(xué) 來(lái)源: 題型:
【題目】為研究男、女生的身高差異,現(xiàn)隨機(jī)從高二某班選出男生、女生各10人,并測(cè)量他們的身高,測(cè)量結(jié)果如下(單位:厘米):
男:164 178 174 185 170 158 163 165 161 170
女:165 168 156 170 163 162 158 153 169 172
(1)根據(jù)測(cè)量結(jié)果完成身高的莖葉圖(單位:厘米),并分別求出男、女生身高的平均值.
(2)請(qǐng)根據(jù)測(cè)量結(jié)果得到20名學(xué)生身高的中位數(shù)(單位:厘米),將男、女生身高不低于和低于的人數(shù)填入下表中,并判斷是否有的把握認(rèn)為男、女生身高有差異?
人數(shù) | 男生 | 女生 |
身高 | ||
身高 |
參照公式:
| 0.10 | 0.05 | 0.025 | 0.010 | 0.005 | 0.001 |
2.706 | 3.841 | .024 | 6.635 | 7.879 | 10.828 |
(3)若男生身高低于165厘米為偏矮,不低于165厘米且低于175厘米為正常,不低于175厘米為偏高.假設(shè)可以用測(cè)量結(jié)果的頻率代替概率,試求從高二的男生中任意選出2人,恰有1人身高屬于正常的概率.
查看答案和解析>>
科目:高中數(shù)學(xué) 來(lái)源: 題型:
【題目】[選修4-4:坐標(biāo)系與參數(shù)方程]
在平面直角坐標(biāo)系中,直線的參數(shù)方程為(為參數(shù),),以坐標(biāo)原點(diǎn)為極點(diǎn),軸的正半軸為極軸建立極坐標(biāo)系,曲線的極坐標(biāo)方程為.
(Ⅰ)若,求直線的普通方程及曲線的直角坐標(biāo)方程;
(Ⅱ)若直線與曲線有兩個(gè)不同的交點(diǎn),求的取值范圍.
查看答案和解析>>
科目:高中數(shù)學(xué) 來(lái)源: 題型:
【題目】已知拋物線的焦點(diǎn)為,其上一點(diǎn)在準(zhǔn)線上的射影為,△恰為一個(gè)邊長(zhǎng)為4的等邊三角形.
(1)求拋物線的方程;
(2)若過(guò)定點(diǎn)的直線交拋物線于,兩點(diǎn),為坐標(biāo)原點(diǎn))的面積為,求直線的方程.
查看答案和解析>>
科目:高中數(shù)學(xué) 來(lái)源: 題型:
【題目】(本小題滿分16分)
在平面直角坐標(biāo)系xOy中,橢圓C:(a>b>0)的上頂點(diǎn)到焦點(diǎn)的距離為2,離心率為.
(1)求a,b的值.
(2)設(shè)P是橢圓C長(zhǎng)軸上的一個(gè)動(dòng)點(diǎn),過(guò)點(diǎn)P作斜率為k的直線l交橢圓C于A、B兩點(diǎn).
(ⅰ)若k=1,求△OAB面積的最大值;
(ⅱ)若PA2+PB2的值與點(diǎn)P的位置無(wú)關(guān),求k的值.
查看答案和解析>>
科目:高中數(shù)學(xué) 來(lái)源: 題型:
【題目】選修4-4:坐標(biāo)系與參數(shù)方程
已知曲線的極坐標(biāo)方程為,直線,直線 .以極點(diǎn)為原點(diǎn),極軸為軸的正半軸建立平面直角坐標(biāo)系.
(1)求直線,的直角坐標(biāo)方程以及曲線的參數(shù)方程;
(2)已知直線與曲線交于兩點(diǎn),直線與曲線交于兩點(diǎn),求的面積.
查看答案和解析>>
科目:高中數(shù)學(xué) 來(lái)源: 題型:
【題目】若存在常數(shù),使得對(duì)定義域內(nèi)的任意,都有成立,則稱函數(shù)在其定義域 上是“利普希茲條件函數(shù)”.
(1)若函數(shù)是“利普希茲條件函數(shù)”,求常數(shù)的最小值;
(2)判斷函數(shù)是否是“利普希茲條件函數(shù)”,若是,請(qǐng)證明,若不是,請(qǐng)說(shuō)明理由;
(3)若是周期為2的“利普希茲條件函數(shù)”,證明:對(duì)任意的實(shí)數(shù),都有.
查看答案和解析>>
百度致信 - 練習(xí)冊(cè)列表 - 試題列表
湖北省互聯(lián)網(wǎng)違法和不良信息舉報(bào)平臺(tái) | 網(wǎng)上有害信息舉報(bào)專區(qū) | 電信詐騙舉報(bào)專區(qū) | 涉歷史虛無(wú)主義有害信息舉報(bào)專區(qū) | 涉企侵權(quán)舉報(bào)專區(qū)
違法和不良信息舉報(bào)電話:027-86699610 舉報(bào)郵箱:58377363@163.com