1.已知橢圓C1,拋物線C2的焦點均在x軸上,從兩條曲線上各取兩個點,將其坐標(biāo)混合記錄于如表中:
x-22$\sqrt{6}$9
y$\sqrt{2}$-$\sqrt{2}$-13
(1)求橢圓C1和拋物線C2的標(biāo)準(zhǔn)方程.
(2)過橢圓C1右焦點F的直線l與此橢圓相交于A,B兩點,若點P為直線x=4上任意一點,
①試證:直線PA,PF,PB的斜率成等差數(shù)列.
②若點P在X軸上,設(shè)$\overrightarrow{FA}$=λ$\overrightarrow{FB}$,λ∈[-2,-1],求|$\overrightarrow{PA}$+$\overrightarrow{PB}$|取最大值時的直線l的方程.

分析 (1)設(shè)拋物線方程為y2=mx,代入4個點,可得m,檢驗可知m=1成立,再將其余兩個點代入橢圓方程,解得a,b,進而得到橢圓方程;
(2)①討論當(dāng)直線AB的斜率為0時,設(shè)P(4,y0),可得結(jié)論;當(dāng)直線AB的斜率不為0時,
設(shè)AB:x=ty+2,代入x2+2y2=8,消去x,運用韋達定理和直線的斜率公式,化簡整理,再結(jié)合向量的坐標(biāo)表示,向量模的平方即為向量的平方,結(jié)合二次函數(shù)最值求法,可得t的值,進而得到所求直線方程.

解答 解:(1)設(shè)拋物線方程為y2=mx,分別將四個點代入解得m=-1,m=1,m=$\frac{\sqrt{6}}{6}$,m=1,
故拋物線方程為y2=x;即點(2,-$\sqrt{2}$)和(9,3)在拋物線上.
因此(-2,$\sqrt{2}$),($\sqrt{6}$,-1)兩個點為橢圓C1上兩點,
設(shè)橢圓方程為:$\frac{{x}^{2}}{{a}^{2}}$+$\frac{{y}^{2}}{^{2}}$=1,
將上述兩個點坐標(biāo)代入$\frac{4}{{a}^{2}}$+$\frac{2}{^{2}}$=1,$\frac{6}{{a}^{2}}$+$\frac{1}{^{2}}$=1,
解得:a2=8,b2=4,
故橢圓方程為:$\frac{{x}^{2}}{8}$+$\frac{{y}^{2}}{4}$=1.          。4分)
(2)①證明:當(dāng)直線AB的斜率為0時,
設(shè)P(4,y0),則kPA+kPB=y0=2kPF,直線PA,PF,PB的斜率成等差數(shù)列;       (5分)
當(dāng)直線AB的斜率不為0時,
設(shè)AB:x=ty+2,代入x2+2y2=8,消去x,可得(2+t2)y2+4ty-4=0,
設(shè)A(x1,y1),B(x2,y2),則y1+y2=-$\frac{4t}{2+{t}^{2}}$,y1y2=-$\frac{4}{2+{t}^{2}}$,
則有:kPA+kPB=$\frac{{y}_{0}-{y}_{1}}{2-t{y}_{1}}$+$\frac{{y}_{0}-{y}_{2}}{2-t{y}_{2}}$=$\frac{4{y}_{0}-(2+t{y}_{0})({y}_{1}+{y}_{2})+2t{y}_{1}{y}_{2}}{4-2t({y}_{1}+{y}_{2})+{t}^{2}{y}_{1}{y}_{2}}$=y0=2kPF,
則直線PA,PF,PB的斜率成等差數(shù)列                  。7分)
$\overrightarrow{②}$因為$\overrightarrow{FA}$=λ$\overrightarrow{FB}$,λ∈[-2,-1],所以$\frac{{y}_{1}}{{y}_{2}}$=λ,且λ<0.
又y1+y2=-$\frac{4t}{2+{t}^{2}}$,y1y2=-$\frac{4}{2+{t}^{2}}$,
則$\frac{({y}_{1}+{y}_{2})^{2}}{{y}_{1}{y}_{2}}$=$\frac{{{y}_{1}}^{2}+2{y}_{1}{y}_{2}+{{y}_{2}}^{2}}{{y}_{1}{y}_{2}}$=λ+$\frac{1}{λ}$+2,
又$\frac{({y}_{1}+{y}_{2})^{2}}{{y}_{1}{y}_{2}}$=-$\frac{4{t}^{2}}{2+{t}^{2}}$,
即λ+$\frac{1}{λ}$+2=-$\frac{4{t}^{2}}{2+{t}^{2}}$,
由λ∈[-2,-1],得λ+$\frac{1}{λ}$∈[-$\frac{5}{2}$,-2],即t2∈[0,$\frac{2}{7}$],
因為P(4,0),$\overrightarrow{PA}$=(x1-4,y1),$\overrightarrow{PB}$=(x2-4,y2),
所以$\overrightarrow{PA}$+$\overrightarrow{PB}$=(x1+x2-8,y1+y2)=(ty1+ty2-4,y1+y2),
故|$\overrightarrow{PA}$+$\overrightarrow{PB}$|2=(ty1+ty2-4)2+(y1+y22=(-$\frac{4{t}^{2}}{2+{t}^{2}}$-4)2+(-$\frac{4t}{2+{t}^{2}}$)2=$\frac{(8{t}^{2}+8)^{2}+16{t}^{2}}{(2+{t}^{2})^{2}}$,
令m=2+t2(m∈[2,$\frac{16}{7}$]),則|$\overrightarrow{PA}$+$\overrightarrow{PB}$|2=$\frac{(8m-8)^{2}+16(m-2)}{{m}^{2}}$=64-$\frac{112}{m}$+$\frac{32}{{m}^{2}}$
=2($\frac{4}{m}$-7)2-34=32($\frac{1}{m}$-$\frac{7}{4}$)2-34,
當(dāng)$\frac{1}{m}$=$\frac{7}{16}$ 即t2=$\frac{2}{7}$時,|$\overrightarrow{PA}$+$\overrightarrow{PB}$|2的值最大,
此時方程為x=±$\frac{\sqrt{14}}{7}$y+2.    (13分)

點評 本題考查橢圓和拋物線方程的求法,注意運用代入法,考查直線和橢圓方程聯(lián)立,運用韋達定理,以及向量坐標(biāo)表示,考查化簡整理的運算能力,屬于難題.

練習(xí)冊系列答案
相關(guān)習(xí)題

科目:高中數(shù)學(xué) 來源:2016-2017學(xué)年河北正定中學(xué)高二上月考一數(shù)學(xué)(理)試卷(解析版) 題型:選擇題

已知直線與直線平行,且與圓相切,則的值為( )

A. B. C. D.

查看答案和解析>>

科目:高中數(shù)學(xué) 來源: 題型:解答題

14.如圖,已知拋物線C:y2=2px(p>0)的準(zhǔn)線為l,焦點為F,圓M的圓心在x軸的正半軸上,且與y軸相切,過原點作傾斜角為$\frac{π}{3}$的直線t,交l于點A,交圓M于點B,且|AO|=|OB|=2.
( I ) 求圓M和拋物線C的方程;
(Ⅱ) 已知點N是x軸正半軸上的一個定點,設(shè)G,H是拋物線上異于原點O的兩個不同點,且$\overrightarrow{GN}$∥$\overrightarrow{NH}$,△GOH面積的最小值為16.問以動線段GH為直徑的圓是否過原點?請說明理由.

查看答案和解析>>

科目:高中數(shù)學(xué) 來源: 題型:選擇題

10.設(shè)向量$\overrightarrow a,\overrightarrow b$滿足$|{\overrightarrow a}|=|{\overrightarrow b}$|=1,$\overrightarrow a•\overrightarrow b=m$,則$|{\overrightarrow a+t\overrightarrow b}|({t∈R})$的最小值為( 。
A.2B.$\sqrt{1+{m^2}}$C.1D.$\sqrt{1-{m^2}}$

查看答案和解析>>

科目:高中數(shù)學(xué) 來源: 題型:填空題

17.若函數(shù)f(x)是定義域D內(nèi)的某個區(qū)間I上的增函數(shù),且$F(x)=\frac{f(x)}{x}$在I上是減函數(shù),則稱y=f(x)是I上的“單反減函數(shù)”,已知$f(x)=lnx,g(x)=2x+\frac{2}{x}+alnx(a∈R)$(1)判斷f(x)在(0,1]上不是(填是或不是)“單反減函數(shù)”;  (2)若g(x)是[1,+∞)上的“單反減函數(shù)”,則實數(shù)a的取值范圍為[0,4].

查看答案和解析>>

科目:高中數(shù)學(xué) 來源: 題型:選擇題

6.一個幾何體的某一方向的視圖是圓,則它不可能是( 。
A.球體B.圓錐C.圓柱D.長方體

查看答案和解析>>

科目:高中數(shù)學(xué) 來源: 題型:解答題

13.袋中裝有形狀、大小完全相同的五個乒乓球,分別標(biāo)有數(shù)字1,2,3,4,5.現(xiàn)每次從中任意抽取一個,取出后不再放回.
(Ⅰ)若抽取三次,求前兩個乒乓球所標(biāo)數(shù)字之和為偶數(shù)的條件下,第三個乒乓球為奇數(shù)的概率;
(Ⅱ)若不斷抽取,直至取出標(biāo)有偶數(shù)的乒乓球為止,設(shè)抽取次數(shù)為ξ,求隨機變量ξ的分布列及數(shù)學(xué)期望.

查看答案和解析>>

科目:高中數(shù)學(xué) 來源: 題型:填空題

9.用三種顏色給立方體的八個頂點染色,其中至少有一種顏色恰好染四個頂點.則任一條棱的兩個端點都不同色的概率是$\frac{1}{35}$.

查看答案和解析>>

科目:高中數(shù)學(xué) 來源: 題型:解答題

8.六安市用“10.0分制”調(diào)查市民的幸福度.現(xiàn)從調(diào)查人群中隨機抽取16名市民,記錄了他們的幸福度分?jǐn)?shù)(以小數(shù)點前的一位數(shù)字為莖,小數(shù)點后的一位數(shù)字為葉)

(1)若幸福度不低于9,則稱該人的幸福度為“極幸!保髲倪@16人中隨機選取3人,至少有1人是“極幸福”的概率;
(2)以這16人的樣本數(shù)據(jù)來估計整個社區(qū)的總體數(shù)據(jù),若從該社區(qū)(人數(shù)很多)任選3人,記ξ表示抽到“極幸!钡娜藬(shù),求ξ的分布列及數(shù)學(xué)期望.

查看答案和解析>>

同步練習(xí)冊答案